Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Poult Sci ; 103(7): 103865, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810564

RESUMO

Chicken coccidiosis has inflicted significant economic losses upon the poultry industry. The primary strategies for preventing and controlling chicken coccidiosis include anticoccidial drugs and vaccination. However, these approaches face limitations, such as drug residues and resistance associated with anticoccidial drugs, and safety concerns related to live vaccines. Consequently, the urgent development of innovative vaccines, such as subunit vaccines, is imperative. In previous study, we screened 2 candidate antigens: Eimeria maxima lysophospholipase (EmLPL) and E. maxima regulatory T cell inducing molecule 1 (EmTregIM-1). To investigate the immune protective effect of the 2 candidate antigens against Eimeria maxima (E. maxima) infection, we constructed recombinant plasmids, namely pET-28a-EmLPL and pET-28a-EmTregIM-1, proceeded to induce the expression of recombinant proteins of EmLPL (rEmLPL) and EmTregIM-1 (rEmTregIM-1). The immunogenic properties of these proteins were confirmed through western blot analysis. Targeting EmLPL and EmTregIM-1, we developed subunit vaccines and encapsulated them in PLGA nanoparticles, resulting in nano-vaccines: PLGA-rEmLPL and PLGA-rEmTregIM-1. The efficacy of these vaccines was assessed through animal protection experiments. The results demonstrated that rEmLPL and rEmTregIM-1 were successfully recognized by anti-E. maxima chicken sera and His-conjugated mouse monoclonal antibodies. Immunization with both subunit and nano-vaccines containing EmLPL and EmTregIM-1 markedly mitigated weight loss and reduced oocyst shedding in chickens infected with E. maxima. Furthermore, the anticoccidial indexes (ACI) for both rEmLPL and PLGA-rEmLPL exceeded 160, whereas those for rEmTregIM-1 and PLGA-rEmTregIM-1 were above 120 but did not reach 160, indicating superior protective efficacy of the rEmLPL and PLGA-rEmLPL formulations. By contrast, the protection afforded by rEmTregIM-1 and PLGA-rEmTregIM-1 was comparatively lower. Thus, EmLPL is identified as a promising candidate antigen for vaccine development against E. maxima infection.


Assuntos
Galinhas , Coccidiose , Eimeria , Doenças das Aves Domésticas , Vacinas Protozoárias , Animais , Eimeria/imunologia , Coccidiose/veterinária , Coccidiose/prevenção & controle , Coccidiose/imunologia , Coccidiose/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/imunologia , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Antígenos de Protozoários/imunologia
2.
Poult Sci ; 102(12): 103098, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797491

RESUMO

It has been reported that infection of chicken coccidian could inhibit the production of Th1 cytokine IFN-γ, thereby evading clearance by the host immune system. The present study aimed to have a further investigation into the effects of Eimeria maxima IFN-γ inhibitory molecules (EmHPSP-2 and EmHPSP-3) on the immune function of chicken peripheral blood mononuclear cells (PBMC) and various T cell subsets. First, separated PBMC or sorted T cell subsets were used for incubation with recombinant proteins of EmHPSP-2 (rEmHPSP-2) and EmHPSP-3 (rEmHPSP-3). Subsequently, the effects of rEmHPSP-2 and rEmHPSP-3 on proliferative capacity, nitric oxide (NO) release and mRNA levels of cytokines of the above cells were detected. The sorting purity of CD8+, CD4+ CD25-, CD4+, and CD4+ CD25+ T cells was 93.01, 88.88, 87.04, and 81.26%, respectively. The NO release of PBMC was significantly inhibited by rEmHPSP-2 and rEmHPSP-3. The proliferation of PBMC and CD4+ T cells was significantly inhibited by rEmHPSP-2 and rEmHPSP-3, whereas CD8+, CD4+ CD25-, and CD4+ CD25+ T cells was significantly promoted by the 2 proteins. The 2 proteins significantly downregulated interferon-gamma (IFN-γ) mRNA level, upregulated the transcriptional levels of interleukin-10 (IL-10) and transforming growth factor-beta1 (TGF-ß1) in PBMC. IFN-γ and IL-2 transcriptional levels were markedly inhibited in CD8+ T cells. IFN-γ transcriptional level was significantly inhibited, but IL-4 was promoted by rEmHPSP-2 and rEmHPSP-3 in CD4+ CD25- T cells. Meanwhile, the inhibitory effects of rEmHPSP-2 and rEmHPSP-3 on the transcriptional levels of IFN-γ and IL-2 were more obvious in CD4+ T cells containing CD25+ cells compared with the CD25+ cells depletion group. It was found that IL-10, TGF-ß1, and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) mRNA levels were significantly upregulated upon stimulation of chicken CD4+ CD25+ T cells by proteins. This study is not only of great significance to clarify the immune evasion mechanism of chicken coccidia, but also provides candidate antigen molecules for development of a novel vaccine against chicken coccidiosis.


Assuntos
Eimeria , Interleucina-10 , Animais , Interferon gama/genética , Interferon gama/metabolismo , Galinhas/metabolismo , Leucócitos Mononucleares , Linfócitos T CD8-Positivos , Interleucina-2 , Fator de Crescimento Transformador beta1 , Subpopulações de Linfócitos T/metabolismo , Citocinas , Proteínas Recombinantes , RNA Mensageiro , Imunidade
3.
Vet Sci ; 9(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36548818

RESUMO

Avian Eimeria species vary in their replication location, fecundity, and pathogenicity. They are required to complete the development within the limited space of host intestines, and some synergistic or antagonistic effects occur among different Eimeria species. This study evaluated the impact of Eimeria mitis on the outcome of Eimeria necatrix or Eimeria tenella challenge infection. The severity of E. mitis/E. necatrix and E. mitis/E. tenella mixed infections were quantified by growth performance evaluation, survival rate analysis, lesion scoring, blood stool scoring, and oocyst output counting. The presence of E. mitis exacerbated the outcome of co-infection with E. tenella, causing high mortality, intestinal lesion score, and oocyst production. However, E. mitis/E. tenella co-infection had little impact on the body weight gain compared to individual E. tenella infection. In addition, the presence of E. mitis appeared not to enhance the pathogenicity of E. necatrix, although it tends to inhibit the growth of challenged birds and facilitate oocyst output and mortality in an E. mitis/E. necatrix co-infection model. Collectively, the results suggested a synergistic relationship between E. mitis and E. tenella/E. necatrix when sharing the same host. The presence of E. mitis contributed to disease pathology induced by E. tenella and might also advance the impact of E. necatrix in co-infections. These observations indicate the importance of accounting for differences in the relationships among different Eimeria species when using mixed infection models.

4.
Pathogens ; 9(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899387

RESUMO

Theileriosis is an important tick-borne protozoosis that causes high morbidity and mortality in cattle. In this study, the pathological and clinical characteristics of cattle experimentally infected with Theileria annulata were investigated. The clinical findings revealed typical signs of bovine theileriosis, including fever, enlargement of superficial lymph nodes, anemia, and respiratory distress. The most common pathological features were petechial and ecchymotic hemorrhages on the mucosa and serosal surface, severe jaundice, pulmonary edema and emphysema, multifocal necrosis and numerous ulcerations in the abomasum, congestion and marble-like discoloration of the spleen, and severe intestinal ecchymotic hemorrhages. The main histological characteristics were proliferation and infiltration of lymphocytes, plasma cells, and macrophages in the lymph nodes, spleen, and lymph node mass. Macroschizonts were observed in the cytoplasm of lymphocytes and macrophages of the lymph nodes and spleen. This study has significance for basic research and the clinical detection and diagnosis of Theileria annulata infection and can aid the prevention and control of theileriosis and future studies of the pathogenic mechanisms.

5.
Parasit Vectors ; 13(1): 378, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727571

RESUMO

BACKGROUND: Babesiosis, a tick-borne disease caused by protozoans of the genus Babesia, is widespread in subtropical and tropical countries. Mitochondria are essential organelles that are responsible for energy transduction and metabolism, calcium homeostasis and cell signaling. Mitochondrial genomes could provide new insights to help elucidate and investigate the biological features, genetic evolution and classification of the protozoans. Nevertheless, there are limited data on the mitochondrial genomes of ovine Babesia spp. in China. METHODS: Herein, we sequenced, assembled and annotated the mitochondrial genomes of six ovine Babesia isolates; analyzed the genome size, gene content, genome structure and cytochrome b (cytb) amino acid sequences and performed comparative mitochondrial genomics and phylogenomic analyses among apicomplexan parasites. RESULTS: The mitochondrial genomes range from 5767 to 5946 bp in length with a linear form and contain three protein-encoding genes, cytochrome c oxidase subunit 1 (cox1), cytochrome c oxidase subunit 3 (cox3) and cytb, six large subunit rRNA genes (LSU) and two terminal inverted repeats (TIR) on both ends. The cytb gene sequence analysis indicated the binding site of anti-Babesia drugs that targeted the cytochrome bc1 complex. Babesia microti and Babesia rodhaini have a dual flip-flop inversion of 184-1082 bp, whereas other Babesia spp. and Theileria spp. have one pair of TIRs, 25-1563 bp. Phylogenetic analysis indicated that the six ovine Babesia isolates were divided into two clades, Babesia sp. and Babesia motasi. Babesia motasi isolates were further separated into two small clades (B. motasi Hebei/Ningxian and B. motasi Tianzhu/Lintan). CONCLUSIONS: The data provided new insights into the taxonomic relationships and drug targets of apicomplexan parasites.


Assuntos
Babesia , Classificação , Genoma Mitocondrial , Animais , Babesia/classificação , Babesia/genética , Babesia/isolamento & purificação , Babesiose/tratamento farmacológico , Babesiose/genética , Citocromos b/genética , Sistemas de Liberação de Medicamentos , Genoma de Protozoário , Filogenia , Ovinos , Doenças dos Ovinos/parasitologia , Doenças Transmitidas por Carrapatos/parasitologia
6.
Ticks Tick Borne Dis ; 10(3): 528-532, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670354

RESUMO

Equine piroplasmosis, caused by Theileria equi and Babesia caballi, is an economically important tick-borne disease worldwide. In the current study, 242 blood samples were randomly collected from horses in Zhangye city of Gansu province, China. The presence and genetic diversity of piroplasms were evaluated with a nested PCR assay, gene sequencing and phylogenetic analysis. The results showed that seventy-five (31.0%) samples were positive for piroplasms. Sequences analysis showed that seventy-three (30.2%) were positive for T. equi, and seven (2.9%) for B. caballi, five of which (2.1%) were infected with T. equi and B. caballi. Phylogenetic analysis revealed two T. equi genotypes (C and E) and one B. caballi genotype (A). The molecular epidemiological and genetic diversity results provide important epidemiological data for control of equine piroplasmosis caused by T. equi and B. caballi in China.


Assuntos
Babesia/genética , Babesiose/epidemiologia , Doenças dos Cavalos/epidemiologia , Theileria/genética , Theileriose/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Animais , Babesia/isolamento & purificação , Babesiose/sangue , China/epidemiologia , DNA de Protozoário/genética , Ensaio de Imunoadsorção Enzimática , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Doenças dos Cavalos/parasitologia , Cavalos/parasitologia , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética , Theileria/isolamento & purificação , Theileriose/sangue , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA