Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833614

RESUMO

Most existing wall-climbing robots have a fixed range of load capacity and a step distance that is small and mostly immutable. It is therefore difficult for them to adapt to a discontinuous wall with particularly large gaps. Based on a modular design and inspired by leech peristalsis and internal soft-bone connection, a bionic crawling modular wall-climbing robot is proposed in this paper. The robot demonstrates the ability to handle variable load characteristics by carrying different numbers of modules. Multiple motion modules are coupled with the internal soft bone so that they work together, giving the robot variable-step-distance functionality. This paper establishes the robotic kinematics model, presents the finite element simulation analysis of the model, and introduces the design of the multi-module cooperative-motion method. Our experiments show that the advantage of variable step distance allows the robot not only to quickly climb and turn on walls, but also to cross discontinuous walls. The maximum climbing step distance of the robot can reach 3.6 times the length of the module and can span a discontinuous wall with a space of 150 mm; the load capacity increases with the number of modules in series. The maximum load that N modules can carry is about 1.3 times the self-weight.


Assuntos
Robótica , Fenômenos Biomecânicos , Biônica , Desenho de Equipamento , Movimento (Física)
2.
Sensors (Basel) ; 21(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34300658

RESUMO

As an important part of the quadruped robot, the leg determines its performance. Flexible legs or flexible joints aid in the buffering and adaptability of robots. At present, most flexible quadruped robots only have two-dimensional flexibility or use complex parallel structures to achieve three-dimensional flexibility. This research will propose a new type of three-dimensional flexible structure. This passive compliant three-dimensional flexibility reduces the weight and complex structure of the robot. The anti-impact performance of the robot is verified by a side impact experiment. The simulation and experiments show that the robot still has good stability even under a simple algorithm and that the flexible leg can reduce the impact on the quadruped robot and improve the environmental adaptability of the robot.


Assuntos
Robótica , Algoritmos , Simulação por Computador , Marcha
3.
Sci Rep ; 10(1): 18778, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139768

RESUMO

In this paper, a variable structure pneumatic soft robot is proposed. Its structure is variable in that when it grasps irregular objects, it can adapt to different sizes by active expansion or contraction. Its expansion range is from diameter 200 to 300 mm, its four soft pneumatic actuators (SPAs) can be rotated independently to adapt to different shapes, and it has high flexibility. The active compliant grasping method enables it to capture at the best position, which can improve the success rate of capture and reduce damage to the object being grasped. The experiment proves the effectiveness of the variable structure mechanism, and the proposed soft robot has low cost and a simple manufacturing process, so the mechanism has great application prospects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA