Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(10): 102434, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041632

RESUMO

Transcription dysregulation is common in sarcomas driven by oncogenic transcription factors. Clear cell sarcoma of soft tissue (CCSST) is a rare sarcoma with poor prognosis presently with no therapy. It is characterized by a balanced t(12;22) (q13;q12) chromosomal translocation, resulting in a fusion of the Ewing's sarcoma gene EWSR1 with activating transcription factor 1 (ATF1) to give an oncogene EWSR1-ATF1. Unlike normal ATF1, whose transcription activity is dependent on phosphorylation, EWSR1-ATF1 is constitutively active to drive ATF1-dependent gene transcription to cause tumorigenesis. No EWSR1-ATF1-targeted therapies have been identified due to the challenges in targeting intracellular transcription factors. Through proteomics screening to identify potential druggable targets for CCSST, we discovered protein arginine methyltransferase 5 (PRMT5) as a novel protein to interact with EWSR1-ATF1. PRMT5 is a type II protein arginine methyltransferase to symmetrically dimethylate arginine residues in substrate proteins to regulate a diverse range of activities including gene transcription, RNA splicing, and DNA repair. We found that PRMT5 enhances EWSR1-ATF1-mediated gene transcription to sustain CCSST cell proliferation. Genetic silencing of PRMT5 in CCSST cells resulted in severely impaired cell proliferation and EWSR1-ATF1-driven transcription. Furthermore, we demonstrate that the clinical-stage PRMT5 inhibitor JNJ-64619178 potently and efficaciously inhibited CCSST cell growth in vitro and in vivo. These results provide new insights into PRMT5 as a transcription regulator and warrant JNJ-64619178 for further clinical development to treat CCSST patients.


Assuntos
Fator 1 Ativador da Transcrição , Proteínas de Fusão Oncogênica , Proteína-Arginina N-Metiltransferases , Proteína EWS de Ligação a RNA , Sarcoma de Células Claras , Neoplasias de Tecidos Moles , Humanos , Fator 1 Ativador da Transcrição/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/metabolismo , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/metabolismo , Transcrição Gênica , Regulação Neoplásica da Expressão Gênica
2.
Am J Physiol Cell Physiol ; 322(5): C1011-C1021, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35385329

RESUMO

Arachidonic acid metabolites epoxyeicosatrienoates (EETs) and hydroxyeicosatetraenoates (HETEs) are important regulators of myocardial blood flow and coronary vascular resistance (CVR), but their mechanisms of action are not fully understood. We applied a chemoproteomics strategy using a clickable photoaffinity probe to identify G protein-coupled receptor 39 (GPR39) as a microvascular smooth muscle cell (mVSMC) receptor selective for two endogenous eicosanoids, 15-HETE and 14,15-EET, which act on the receptor to oppose each other's activity. The former increases mVSMC intracellular calcium via GPR39 and augments coronary microvascular resistance, and the latter inhibits these actions. Furthermore, we find that the efficacy of both ligands is potentiated by zinc acting as an allosteric modulator. Measurements of coronary perfusion pressure (CPP) in GPR39-null hearts using the Langendorff preparation indicate the receptor senses these eicosanoids to regulate microvascular tone. These results implicate GPR39 as an eicosanoid receptor and key regulator of myocardial tissue perfusion. Our findings will have a major impact on understanding the roles of eicosanoids in cardiovascular physiology and disease and provide an opportunity for the development of novel GPR39-targeting therapies for cardiovascular disease.


Assuntos
Sistema Enzimático do Citocromo P-450 , Eicosanoides , Ácido Araquidônico/metabolismo , Vasos Coronários/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Eicosanoides/análise , Eicosanoides/metabolismo , Eicosanoides/farmacologia , Resistência Vascular
3.
Bioorg Med Chem Lett ; 30(19): 127455, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32730943

RESUMO

cAMP-response element binding protein (CREB) is an oncogenic transcription factor implicated in many different types of cancer. We previously reported the discovery of 666-15 as a potent inhibitor of CREB-mediated gene transcription. In an effort to improve the aqueous solubility of 666-15, amino ester prodrugs 1 and 4 were designed and synthesized. Detailed chemical and biological studies of 1 and 4 revealed that a small portion of the prodrugs were converted into 666-15 through intermediate 3 instead of a long-range O,N-acyl transfer reaction that was initially proposed. These results provide unique insights into the activation of these ester prodrugs.


Assuntos
Anilidas/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Ésteres/farmacologia , Naftalenos/farmacologia , Pró-Fármacos/farmacologia , Anilidas/síntese química , Anilidas/metabolismo , Estabilidade de Medicamentos , Ésteres/síntese química , Ésteres/metabolismo , Células HEK293 , Humanos , Hidrólise , Naftalenos/síntese química , Naftalenos/metabolismo , Pró-Fármacos/síntese química , Pró-Fármacos/metabolismo , Solubilidade
4.
J Cell Mol Med ; 23(2): 1224-1234, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30461194

RESUMO

Bone is the most common metastatic site for breast cancer. The excessive osteoclast activity in the metastatic bone lesions often produces osteolysis. The cyclic-AMP (cAMP)-response element binding protein (CREB) serves a variety of biological functions including the transformation and immortalization of breast cancer cells. In addition, evidence has shown that CREB plays a key role in osteoclastgenesis and bone resorption. Small organic molecules with good pharmacokinetic properties and specificity, targeting CREB-CBP (CREB-binding protein) interaction to inhibit CREB-mediated gene transcription have attracted more considerations as cancer therapeutics. We recently identified naphthol AS-E (nAS-E) as a cell-permeable inhibitor of CREB-mediated gene transcription through inhibiting CREB-CBP interaction. In this study, we tested the effect of nAS-E on breast cancer cell proliferation, survival, migration as well as osteoclast formation and bone resorption in vitro for the first time. Our results demonstrated that nAS-E inhibited breast cancer cell proliferation, migration, survival and suppressed osteoclast differentiation as well as bone resorption through inhibiting CREB-CBP interaction. In addition, the in vivo effect of nAS-E in protecting against breast cancer-induced osteolysis was evaluated. Our results indicated that nAS-E could reverse bone loss induced by MDA-MB-231 tumour. These results suggest that small molecules targeting CREB-CBP interaction to inhibit CREB-mediated gene transcription might be a potential approach for the treatment of breast cancer bone metastasis.


Assuntos
Neoplasias Ósseas/prevenção & controle , Reabsorção Óssea/tratamento farmacológico , Neoplasias da Mama/prevenção & controle , Proteína de Ligação a CREB/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Naftóis/farmacologia , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Animais , Apoptose , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosforilação , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Virol ; 90(19): 8686-97, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440893

RESUMO

UNLABELLED: Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella upon primary infection and zoster upon reactivation from latency in sensory ganglion neurons. The replication of herpesviruses requires manipulation of cell signaling pathways. Notably, CREB, a factor involved in the regulation of several cellular processes, is activated upon infection of T cells with VZV. Here, we report that VZV infection also induced CREB phosphorylation in fibroblasts and that XX-650-23, a newly identified inhibitor of the phosphorylated-CREB (pCREB) interaction with p300/CBP, restricted cell-cell spread of VZV in vitro CREB phosphorylation did not require the viral open reading frame 47 (ORF47) and ORF66 kinases encoded by VZV. Evaluating the biological relevance of these observations during VZV infection of human skin xenografts in the SCID mouse model of VZV pathogenesis showed both that pCREB was upregulated in infected skin and that treatment with XX-650-23 reduced infectious-virus production and limited lesion formation compared to treatment with a vehicle control. Thus, processes of CREB activation and p300/CBP binding are important for VZV skin infection and may be targeted for antiviral drug development. IMPORTANCE: Varicella-zoster virus (VZV) is a common pathogen that causes chicken pox and shingles. As with all herpesviruses, the infection is acquired for life, and the virus can periodically reactivate from latency. Although VZV infection is usually benign with few or no deleterious consequences, infection can be life threatening in immunocompromised patients. Otherwise healthy elderly individuals who develop zoster as a consequence of viral reactivation are at risk for postherpetic neuralgia (PHN), a painful and long-lasting complication. Current vaccines use a live attenuated virus that is usually safe but cannot be given to many immunodeficient patients and retains the capacity to establish latency and reactivate, causing zoster. Antiviral drugs are effective against severe VZV infections but have little impact on PHN. A better understanding of virus-host cell interactions is relevant for developing improved therapies to safely interfere with cellular processes that are crucial for VZV pathogenesis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína p300 Associada a E1A/metabolismo , Herpesvirus Humano 3/fisiologia , Interações Hospedeiro-Patógeno , Fragmentos de Peptídeos/metabolismo , Sialoglicoproteínas/metabolismo , Replicação Viral , Animais , Modelos Animais de Doenças , Herpes Zoster/patologia , Herpes Zoster/virologia , Humanos , Camundongos SCID , Fosforilação , Processamento de Proteína Pós-Traducional , Pele/patologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-27649858

RESUMO

Epoxyeicosatrienoic acids (EETs) are potent vasodilators that play important roles in cardiovascular physiology and disease, yet the molecular mechanisms underlying the biological actions of EETs are not fully understood. Multiple lines of evidence suggest that the actions of EETs are in part mediated via G protein-coupled receptor (GPCR) signaling, but the identity of such a receptor has remained elusive. We sought to identify 14,15-EET-responsive GPCRs. A set of 105 clones were expressed in Xenopus oocyte and screened for their ability to activate cAMP-dependent chloride current. Several receptors responded to micromolar concentrations of 14,15-EET, with the top five being prostaglandin receptor subtypes (PTGER2, PTGER4, PTGFR, PTGDR, PTGER3IV). Overall, our results indicate that multiple low-affinity 14,15-EET GPCRs are capable of increasing cAMP levels following 14,15-EET stimulation, highlighting the potential for cross-talk between prostanoid and other ecosanoid GPCRs. Our data also indicate that none of the 105 GPCRs screened met our criteria for a high-affinity receptor for 14,15-EET.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Receptores Acoplados a Proteínas G/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Avaliação Pré-Clínica de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Camundongos , Oócitos/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Vasoconstrição/efeitos dos fármacos , Xenopus , beta-Arrestinas/metabolismo
7.
Bioorg Med Chem Lett ; 27(14): 3107-3110, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28552339

RESUMO

Pyrroloquinazoline is a privileged chemical scaffold with diverse biological activities. We recently described a series of N-3 acylated 1,3-diaminopyrroloquinazolines with potent anticancer activities. The N-1 primary amino group in 1,3-diaminopyrroloquinazoline is critical for its inhibitory activity against dihydrofolate reductase (DHFR). In order to design out this unnecessary DHFR inhibition activity and further expand the chemical space associated with pyrroloquinazoline, we removed the N-1 primary amino group. In this report, we describe our design and synthesis of a series of N-3 acylated monoaminopyrroloquinazolines. Biological evaluation of these compounds identified a naphthamide 4a as a potent anticancer agent (GI50=88-200nM), suggesting that removing the N-1 primary amino group in 1,3-diaminopyrroloquinazoline is a useful chemical modification that can be introduced to improve the anticancer activity.


Assuntos
Antineoplásicos/síntese química , Desenho de Fármacos , Antagonistas do Ácido Fólico/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/química , Humanos , Quinazolinas/síntese química , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo
8.
Bioorg Med Chem Lett ; 27(4): 994-998, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28073675

RESUMO

cAMP-response element binding protein (CREB) is a nuclear transcription factor that has been implicated in the pathogenesis and maintenance of various types of human cancers. Identification of small molecule inhibitors of CREB-mediated gene transcription has been pursued as a novel strategy for developing cancer therapeutics. We recently discovered a potent and cell-permeable CREB inhibitor called 666-15. 666-15 is a bisnaphthamide and has been shown to possess efficacious anti-breast cancer activity without toxicity in vivo. In this study, we designed and synthesized a series of analogs of 666-15 to probe the importance of regiochemistry in naphthalene ring B. Biological evaluations of these analogs demonstrated that the substitution pattern of the alkoxy and carboxamide in naphthalene ring B is very critical for maintaining potent CREB inhibition activity, suggesting that the unique bioactive conformation accessible in 666-15 is critically important.


Assuntos
Anilidas/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Naftalenos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Anilidas/química , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Desenho de Fármacos , Humanos , Naftalenos/química , Estereoisomerismo , Relação Estrutura-Atividade , Transcrição Gênica/fisiologia
9.
J Biol Chem ; 288(11): 7697-7703, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23362272

RESUMO

Soluble epoxide hydrolase (sEH) plays a key role in the metabolic conversion of the protective eicosanoid 14,15-epoxyeicosatrienoic acid to 14,15-dihydroxyeicosatrienoic acid. Accordingly, inhibition of sEH hydrolase activity has been shown to be beneficial in multiple models of cardiovascular diseases, thus identifying sEH as a valuable therapeutic target. Recently, a common human polymorphism (R287Q) was identified that reduces sEH hydrolase activity and is localized to the dimerization interface of the protein, suggesting a relationship between sEH dimerization and activity. To directly test the hypothesis that dimerization is essential for the proper function of sEH, we generated mutations within the sEH protein that would either disrupt or stabilize dimerization. We quantified the dimerization state of each mutant using a split firefly luciferase protein fragment-assisted complementation system. The hydrolase activity of each mutant was determined using a fluorescence-based substrate conversion assay. We found that mutations that disrupted dimerization also eliminated hydrolase enzymatic activity. In contrast, a mutation that stabilized dimerization restored hydrolase activity. Finally, we investigated the kinetics of sEH dimerization and found that the human R287Q polymorphism was metastable and capable of swapping dimer partners faster than the WT enzyme. These results indicate that dimerization is required for sEH hydrolase activity. Disrupting sEH dimerization may therefore serve as a novel therapeutic strategy for reducing sEH hydrolase activity.


Assuntos
Epóxido Hidrolases/química , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/química , Análise Mutacional de DNA , Dimerização , Epóxido Hidrolases/fisiologia , Teste de Complementação Genética , Células HEK293 , Humanos , Hidrolases/química , Cinética , Modelos Moleculares , Mutação , Polimorfismo Genético , Solubilidade , Transfecção
10.
Bioorg Med Chem Lett ; 23(19): 5371-5, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23953193

RESUMO

Cyclic-AMP response-element binding protein (CREB) is a stimulus-activated transcription factor. Its transcription activity requires its binding with CREB-binding protein (CBP) after CREB is phosphorylated at Ser133. The domains involved for CREB-CBP interaction are kinase-inducible domain (KID) from CREB and KID-interacting domain (KIX) from CBP. Recent studies suggest that CREB is an attractive target for novel cancer therapeutics. To identify novel chemotypes as inhibitors of KIX-KID interaction, we screened the NCI-diversity set of compounds using a split renilla luciferase assay and identified 2-[(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio]pyridine 1-oxide (compound 1, NSC228155) as a potent inhibitor of KIX-KID interaction. However, compound 1 was not particularly selective against CREB-mediated gene transcription in living HEK 293T cells. Further structure-activityrelationship studies identified 4-aniline substituted nitrobenzofurazans with improved selectivity.


Assuntos
Benzoxazóis/química , Benzoxazóis/farmacologia , Proteína de Ligação a CREB/antagonistas & inibidores , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Oxidiazóis/química , Oxidiazóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Proteína de Ligação a CREB/genética , Células Cultivadas , Células HEK293 , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
11.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961390

RESUMO

Protein synthesis and subsequent delivery to the target locations in cells are essential for their proper functions. Methods to label and distinguish newly synthesized proteins from existing ones are critical to assess their differential properties, but such methods are lacking. We describe the first chemical genetics-based approach for selective labeling of existing and newly synthesized proteins that we termed as CG -SLENP. Using HaloTag in-frame fusion with lamin A (LA), we demonstrate that the two pools of proteins can be selectively labeled using CG -SLENP in living cells. We further employ our recently developed selective small molecule ligand LBL1 for LA to probe the potential differences between newly synthesized and existing LA. Our results show that LBL1 can differentially modulate these two pools of LA. These results indicate that the assembly states of newly synthesized LA are distinct from existing LA in living cells. The CG -SLENP method is potentially generalizable to study any cellular proteins.

12.
Bioorg Med Chem ; 20(23): 6811-20, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23102993

RESUMO

CREB (cyclic AMP-response element binding protein) is a downstream transcription factor of a multitude of signaling pathways emanating from receptor tyrosine kinases or G-protein coupled receptors. CREB is not activated until it is phosphorylated at Ser133 and its subsequent binding to CREB-binding protein (CBP) through kinase-inducible domain (KID) in CREB and KID-interacting (KIX) domain in CBP. Tumor tissues from various organs present higher level of expression and activation of CREB. Thus CREB has been proposed as a promising cancer drug target. We previously described naphthol AS-E (1a) as a small molecule inhibitor of CREB-mediated gene transcription in living cells. Here we report the structure-activity relationship (SAR) studies of 1a by modifying the appendant phenyl ring. All the compounds were evaluated for in vitro inhibition of KIX-KID interaction, cellular inhibition of CREB-mediated gene transcription and inhibition of proliferation of four cancer cell lines (A549, MCF-7, MDA-MB-231 and MDA-MB-468). SAR indicated that a small and electron-withdrawing group was preferred at the para-position for KIX-KID interaction inhibition. Compound 1a was selected for further biological characterization and it was found that 1a down-regulated the expression of endogenous CREB target genes. Expression of a constitutively active CREB mutant, VP16-CREB in MCF-7 cells rendered the cells resistant to 1a, suggesting that CREB was critical in mediating its anticancer activity. Furthermore, 1a was not toxic to normal human cells. Collectively, these data support that 1a represents a structural template for further development into potential cancer therapeutics with a novel mechanism of action.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Naftóis/química , Naftóis/farmacologia , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Mapeamento de Interação de Proteínas , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos
13.
ACS Med Chem Lett ; 13(3): 388-395, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35300089

RESUMO

cAMP-response element binding protein (CREB) is a transcription factor involved in multiple cancers. Chemical inhibitors of CREB represent potential anticancer agents. We previously identified 666-15 as a potent CREB inhibitor. While 666-15 showed efficacious anticancer activity in vivo through intraperitoneal (IP) injection, its oral bioavailability is limited. To increase its oral bioavailability, we describe synthesis and evaluation of prodrugs based on 666-15. The amino acid esters were attempted, but they were not stable for detailed characterization. The corresponding sulfate and phosphates were prepared. The sulfate of 666-15 was too stable to release 666-15 while the phosphates were converted into 666-15 with half-lives of ∼2 h. Phosphate 3 was also a potent CREB inhibitor with anti-breast cancer activity. Furthermore, compound 3 showed much improved oral bioavailability at 38%. These studies support that 3 can be used as an oral CREB inhibitor while IP administration of 666-15 is preferred for in vivo applications.

14.
Acta Pharm Sin B ; 12(5): 2406-2416, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646545

RESUMO

Target identification of bioactive compounds is important for understanding their mechanisms of action and provides critical insights into their therapeutic utility. While it remains a challenge, unbiased chemoproteomics strategy using clickable photoaffinity probes is a useful and validated approach for target identification. One major limitation of this approach is the efficient synthesis of appropriately substituted clickable photoaffinity probes. Herein, we describe an efficient and consistent method to prepare such probes. We further employed this method to prepare a highly stereo-congested probe based on naturally occurring triterpenoid betulinic acid. With this photoaffinity probe, we identified tropomyosin as a novel target for betulinic acid that can account for the unique biological phenotype on cellular cytoskeleton induced by betulinic acid.

15.
Eur J Med Chem ; 210: 112993, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189436

RESUMO

Small molecule inhibitors of proteins represent important medicines and critical chemical tools to investigate the biology of the target proteins. Advances in various -omics technologies have fueled the pace of discovery of disease-relevant proteins. Translating these discoveries into human benefits requires us to develop specific chemicals to inhibit the proteins. However, traditional small molecule inhibitors binding to orthosteric or allosteric sites face significant challenges. These challenges include drug selectivity, therapy resistance as well as drugging undruggable proteins and multi-domain proteins. To address these challenges, PROteolysis TArgeting Chimera (PROTAC) has been proposed. PROTACs are heterobifunctional molecules containing a binding ligand for a protein of interest and E3 ligase-recruiting ligand that are connected through a chemical linker. Binding of a PROTAC to its target protein will bring a E3 ligase in close proximity to initiate polyubiquitination of the target protein ensuing its proteasome-mediated degradation. Unlike small molecule inhibitors, PROTACs achieve target protein degradation in its entirety in a catalytical fashion. In this review, we analyze recent advances in PROTAC design to discuss how PROTACs can address the challenges facing small molecule inhibitors to potentially deliver next-generation medicines and chemical tools with high selectivity and efficacy. We also offer our perspectives on the future promise and potential limitations facing PROTACs. Investigations to overcome these limitations of PROTACs will further help realize the promise of PROTACs for human benefits.


Assuntos
Proteínas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos , Estrutura Molecular , Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
16.
Physiol Rep ; 9(22): e15121, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34806324

RESUMO

Variants in the LMNA gene, which encodes for Lamin A/C, are associated with cardiac conduction disease (CCD). We previously reported that Lamin A/C variants p.R545H and p.A287Lfs*193, which were identified in CCD patients, decreased peak INa in HEK-293 cells expressing Nav 1.5. Decreased peak INa in the cardiac conduction system could account for patients' atrioventricular block. We found that serine 22 (Ser 22) phosphorylation of Lamin A/C was decreased in the p.R545H variant and hypothesized that lamin phosphorylation modulated Nav 1.5 activity. To test this hypothesis, we assessed Nav 1.5 function in HEK-293 cells co-transfected with LMNA variants or treated with the small molecule LBL1 (lamin-binding ligand 1). LBL1 decreased Ser 22 phosphorylation by 65% but did not affect Nav 1.5 function. To test the complete loss of phosphorylation, we generated a version of LMNA with serine 22 converted to alanine 22 (S22A-LMNA); and a version of mutant R545H-LMNA that mimics phosphorylation via serine 22 to aspartic acid 22 substitution (S22D-R545H-LMNA). We found that S22A-LMNA inhibited Lamin-mediated activation of peak INa by 63% and shifted voltage-dependency of steady-state inactivation of Nav 1.5. Conversely, S22D-R545H-LMNA abolished the effects of mutant R545H-LMNA on voltage-dependency but not peak INa . We conclude that Lamin A/C Ser 22 phosphorylation can modulate Nav 1.5 function and contributes to the mechanism by which R545H-LMNA alters Nav 1.5 function. The differential impact of complete versus partial loss of Ser 22 phosphorylation suggests a threshold of phosphorylation that is required for full Nav 1.5 modulation. This is the first study to link Lamin A/C phosphorylation to Nav 1.5 function.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Lamina Tipo A/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Doença do Sistema de Condução Cardíaco/metabolismo , Células HEK293 , Humanos , Lamina Tipo A/metabolismo , Mutação , Mutação de Sentido Incorreto , Técnicas de Patch-Clamp , Fosforilação
17.
Methods Enzymol ; 633: 169-184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32046844

RESUMO

The cyclic-AMP response element binding protein (CREB) is an important nuclear transcription factor and has been shown to be overexpressed and/or over-activated in many different cancer types, suggesting that targeting CREB is a novel approach for developing cancer therapies. Our lab discovered the first cell-permeable small molecule inhibitor of CREB, from which we further developed a potent CREB inhibitor with in vivo anti-cancer activity. In this article, we detailed our biochemical and cell-based bioassays to assess different small molecule CREB inhibitors.


Assuntos
Bioensaio , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fosforilação , Transcrição Gênica
18.
Methods Enzymol ; 633: 185-201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32046845

RESUMO

Phenotypic screening is a powerful approach to discover small molecules targeting pathways or disease biology with complex genetic causes. Following the initial discovery of these small molecules is their target identification, which is at the cornerstone in addressing their biological and clinical utility. Yet, finding the needle in the haystack remains a challenge. Nuclear lamins are type V intermediate filament proteins that form a filamentous structure underneath the inner nuclear envelope to support the mechanical stability of the mammalian cell nucleus. They also participate a myriad of other cellular signaling processes with incompletely understood molecular mechanisms. Small molecules that can directly bind to nuclear lamins will be incredible tools to address lamins' roles in different aspects of biology. However, these small molecules did not exist until recently. We previously discovered an acylpyrroloquinazoline called LBL1 that selectively killed breast cancer cells without harming normal human cells. To help understand the mechanism of action of LBL1, we recently took an unbiased chemical proteomics approach to identify its direct binding targets from the entire human cellular proteome. In this chapter, we describe our detailed methods to identify and validate lamins as the direct targets of LBL1. In this approach, we developed a clickable photoaffinity probe called LBL1-P that contains acylpyrroloquinazoline, trifluoromethyldiazirine and alkyne groups. Furthermore, we described a fluorescence microscopic method to validate that LBL1 directly targets lamin A in living cells. When properly designed, this approach should be broadly applicable to other bioactive small molecules.


Assuntos
Núcleo Celular , Membrana Nuclear , Quinazolinas , Animais , Humanos , Lamina Tipo A/genética , Laminas , Proteoma , Proteômica , Quinazolinas/química
19.
Bioorg Med Chem Lett ; 19(14): 3866-9, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19380225

RESUMO

A rapid array-based protocol is presented by which a modest affinity protein-binding small molecule can be appended to a library of peptoids via click chemistry. The array can then be screened for improved ligands that exhibit a higher affinity for the protein target.


Assuntos
Peptoides/química , Análise Serial de Proteínas , Proteínas/química , Ligantes , Peptoides/síntese química , Proteínas/isolamento & purificação , Proteínas/metabolismo
20.
J Med Chem ; 62(24): 11423-11429, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31765143

RESUMO

CREB is a transcription factor implicated in the pathogenesis of multiple cancers. Targeting CREB is a promising strategy to develop potential cancer therapeutics. Previously, we identified 666-15 as a potent CREB inhibitor. Herein, we designed an ester prodrug of 666-15 through a long-range O,N-acyl transfer reaction for improved aqueous solubility. Unexpectedly, we discovered a small molecule 11 (653-47) that can potentiate the CREB inhibitory activity of 666-15 although 653-47 alone does not inhibit CREB.


Assuntos
Anilidas/química , Anilidas/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Descoberta de Drogas , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Naftalenos/química , Naftalenos/farmacologia , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células HEK293 , Humanos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA