Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(2): 1250-1256, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38189233

RESUMO

Luminescent covalent organic frameworks (LCOFs) have emerged as indispensable candidates in various applications due to their greater tunable emitting properties and structural robustness compared to small molecule emitters. An unsolved issue in this area is developing highly luminescent LCOFs of which the nonradiative quenching pathways were suppressed as much as possible. Here, a robust aminal-linked COF (DD-COF) possessing perdeuterated light-emitting monomers was designed and synthesized. The solid-state photoluminescence quantum yield of the DD-COF reaches 81%, significantly outcompeting all state-of-the-art LCOFs reported so far. The exceptional luminescent efficiency is attributed to the inhibition of different pathways of nonradiative decay, especially from bond vibrations where only substitution by a heavier isotope with a lower zero-point vibration frequency works. Furthermore, the prepared deuterated COF not only boosts higher photostability under UV irradiation but also enables superior fluorescence sensing performance for iodine detection compared to nondeuterated COF.

2.
Molecules ; 29(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38731637

RESUMO

Inkjet printing technology offers a unique approach to producing direct-patterned pixels without fine metal masks for active matrix displays. Organic light-emitting diodes (OLEDs) consisting of thermally activated delayed fluorescence (TADF) emitters facilitate efficient light emission without heavy metals, such as platinum and iridium. Multi-resonance TADF molecules, characterized by their small full width at half maxima (FWHM), are highly suitable for the requirements of wide color-gamut displays. Herein, host-free TADF inks with a low concentration of 1 mg/mL were developed and inkjet-printed onto a seeding layer, concurrently serving as the hole-transporting layer. Attributed to the proof-of-concept of host-free inks printed on a mixed seeding layer, a maximum external quantum efficiency of 13.1% (improved by a factor of 21.8) was achieved in the inkjet-printed OLED, with a remarkably narrow FWHM of only 32 nm. Highly efficient energy transfer was facilitated by the effective dispersion of the sensitizer around the terminal emitters.

5.
Chem Sci ; 15(29): 11382-11390, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39055019

RESUMO

Luminescent metallopolymers have attracted broad interest in the fields of healthcare and organic electronics. However, polymeric emitters based on earth-abundant metal complexes are scarce. Here, two series of Cu(i) polymers, PMAC-x and PCAAC-x (x = 1-3) have been developed using two kinds of Cu(i)-based carbene-metal-amide (CMA) complexes as side-chain emitter units to combine with a nonconjugated polystyrene backbone. These Cu(i) polymers emit via distinct thermally activated delayed fluorescence or dominant phosphorescence, inherited from the grafted Cu(i)-based CMA units. Particularly, the PMAC-x polymers exhibit high photoluminescence quantum efficiencies of up to 0.78, short emission lifetimes of down to 0.66 µs, and fast radiative rates of up to 106 s-1 in neat films. Thanks to the good encapsulation effect of the polystyrene backbone, these Cu(i) polymers not only demonstrate favorable moisture stability but also show significant aggregation-induced emission. The resultant host-free solution-processed organic light-emitting diodes (OLEDs) achieve outstanding electroluminescence performance with a record external quantum efficiency of 13.8% at a practical luminance of ∼100 nits, representing state-of-the-art device efficiency for metallopolymer-based OLEDs. This work not only presents the first example of CMA polymers but also provides the future direction of polymeric emitters from earth-abundant metal complexes for the OLED application.

6.
Nanoscale Horiz ; 9(3): 465-471, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38224192

RESUMO

Interfacial modification is vital to boost the performance of colloidal quantum-dot light-emitting diodes (QLEDs). We introduce phenethylammonium bromide (PEABr) as an interlayer to reduce the trap states and exciton quenching at the interface between the emitting layer (EML) with CdSe/ZnS quantum-dots and the electron transport layer (ETL) with ZnMgO. The presence of PEABr separates the EML and the ETL and thus passivates the surface traps of ZnMgO. Moreover, the interfacial modification also alleviates electron injection, leading to more improved carrier injection balance. Consequently, the external quantum efficiency of the PEABr-based red QLED reached 27.6%, which outperformed those of the previously reported devices. Our results indicate that the halide ion salts are promising to balance charge carrier injection and reduce exciton quenching in the QLEDs.

7.
Small Methods ; : e2301555, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185747

RESUMO

Iridium(III) complexes are particularly noted for their excellent potentials in fabrication of blue organic light-emitting diodes (OLEDs), but the severe efficiency roll-off largely hampered their practical applications. To reveal the underlying characteristics, three Ir(III) complexes, namely f-ct5c, f-ct5d, and f-ct11, bearing imidazo[4,5-b]pyrazin-2-ylidene cyclometalates are prepared and characterized in detail. Both f-ct5c and f-ct5d (also their mixture f-ct5mix) gave intensive blue emissions peaking at ≈465 nm with short radiative lifetimes of 1.76 and 2.45 µs respectively, in degassed toluene. Alternatively, f-ct11 with two 4-tert-butylphenyl substituents on each imidazo[4,5-b]pyrazin-2-ylidene entity, possessed a bluish-green emission (508 nm) together with an extended radiative lifetime of 34.3 µs in the dispersed PMMA matrix. Consequently, the resulting solution-processed OLED with f-ct11 delivered a maximum external quantum efficiency (EQEmax ) of 6.5% with serious efficiency roll-offs. In contrast, f-ct5mix based device achieved a high EQEmax of 27.2% and the EQE maintained at 23.0% of 1000 cd m-2 . Furthermore, the hyper-OLEDs with f-ct5mix as the sensitizer and v-DABNA as the terminal emitter afford narrowed emission with a considerably high EQEmax exceeding 32%, affirming the potential of f-ct5mix to serve as both the emitter and sensitizer in OLEDs.

8.
Research (Wash D C) ; 2021: 9525802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38617381

RESUMO

Organic semiconductors with bipolar transporting character are highly attractive as they offer the possibility to achieve high optoelectronic performance in simple device structures. However, the continual efforts in preparing bipolar materials are focusing on donor-acceptor (D-A) architectures by introducing both electron-donating and electron-withdrawing units into one molecule in static molecular design principles. Here, we report a dynamic approach to construct bipolar materials using only electron-donating carbazoles connected by N-P=X resonance linkages in a donor-resonance-donor (D-r-D) structure. By facilitating the stimuli-responsive resonance variation, these D-r-D molecules exhibit extraordinary bipolar properties by positively charging one donor of carbazole in enantiotropic N+=P-X- canonical forms for electron transport without the involvement of any acceptors. With thus realized efficient and balanced charge transport, blue and deep-blue phosphorescent organic light emitting diodes hosted by these D-r-D molecules show high external quantum efficiencies up to 16.2% and 18.3% in vacuum-deposited and spin-coated devices, respectively. These results via the D-r-D molecular design strategy represent an important concept advance in constructing bipolar organic optoelectronic semiconductors dynamically for high-performance device applications.

9.
Innovation (Camb) ; 5(1): 100553, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38235190
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA