Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(2): e202315210, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37991245

RESUMO

The investigation of organic light-emitting diodes (OLEDs) and organic laser devices with thermally activated delayed fluorescence (TADF) molecules is emerging due to the potential of harnessing triplets. In this work, a boron/nitrogen multiple-resonance TADF polycyclic framework fusing carbazole units (CzBNPh) was proposed. CzBNPh exhibited a narrowband emission (<30 nm), a unity photoluminescence quantum yield, and a fast radiative rate. Consequently, CzBNPh demonstrated a low distributed feedback (DFB) lasing threshold of 0.68 µJ cm-2 . Furthermore, the stimulated emission zone of CzBNPh was effectively separated from its singlet and triplet absorption, thereby minimizing the singlet-triplet annihilation under long-pulsed excitation ranging from 20 µs to 2.5 ms. Significantly, the enhanced rigid molecular conformation, thermal stability, and photo-stability resulted in improved lasing and electroluminescence stability compared to that of 5,9-diphenyl-5,9-diaza-13b-boranaphtho[3,2,1-de]anthracene (DABNA)-core. These findings indicate the potential of CzBN-core as a promising framework for achieving long-pulsed wave and electrically-pumped lasing in the future.

2.
Angew Chem Int Ed Engl ; : e202404528, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722260

RESUMO

Natural photoactive systems have evolved to harness broad-spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy. Here, focusing on azo-switches-the most extensively studied photoswitches, we demonstrate effective solar E→Z photoisomerization with photoconversions exceeding 80 % under unfiltered sunlight. These sunlight-driven azo-switches are developed by rendering the absorption of E isomers overwhelmingly stronger than that of Z isomers across a broad ultraviolet to visible spectrum. This unusual type of spectral profile is realized by a simple yet highly adjustable molecular design strategy, enabling the fine-tuning of spectral window that extends light absorption beyond 600 nm. Notably, back-photoconversion can be achieved without impairing the forward solar isomerization, resulting in unique light-reversible solar switches. Such exceptional solar chemistry of photoswitches provides unprecedented opportunities for developing sustainable light-driven systems and efficient solar energy technologies.

3.
Inorg Chem ; 62(45): 18689-18696, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37897420

RESUMO

Through in-depth study of the properties and reaction mechanisms of catalysts, it is possible to better optimize catalytic systems and improve reaction efficiency and selectivity. This remains one of the challenges in the field of catalysis. Therefore, the research and design of catalysts play crucial roles in understanding and optimizing catalytic reaction mechanisms. A robust 2D zinc-based MOFs (Zn-HA) supported Co(II) ion catalyst (Zn-HA@Co) has been designed and synthesized via a coordination-assisted strategy for ß-alkylation of secondary alcohols with primary alcohols. The characterization demonstrated that the anchoring of Co(II) on Zn-HA via coordination could efficiently enhance the Co(II) ion dispersity and interaction between Co(II) and Zn-HA MOFs. Importantly, the density functional theory results have provided mechanistic insights into the energy of the HOMO and LUMO of the Zn-HA@Co catalyst as well as the energy change of the entire process after interacting with the reactants and the specific energy changes of each orbital. The synthesized Zn-HA@Co MOFs effectively lower the energy barrier of the catalytic reaction process. We expect that our research and design of catalysts will serve as valuable guideline for understanding and optimizing catalytic reaction mechanisms.

4.
Angew Chem Int Ed Engl ; 60(30): 16539-16546, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33852166

RESUMO

Azobenzenes are classical molecular photoswitches that have been widely used. In recent endeavors of molecular design, replacing one or both phenyl rings with heteroaromatic rings has emerged as a strategy to expand molecular diversity and access improved photoswitching properties. Many mono-heteroaryl azo molecules with unique structures and/or properties have been developed, but the potential of bis-heteroaryl architectures is far from fully exploited. We report a family of azobispyrazoles, which combine (near-)quantitative bidirectional photoconversion and widely tunable Z-isomer thermal half-lives from hours to years. The two five-membered rings remarkably weaken the intramolecular steric hindrance, providing new possibilities for engineering the geometric and electronic structure of azo photoswitches. Azobispyrazoles generally exhibit twisted Z-isomers that facilitate complete Z→E photoisomerization, and their thermal stability can be broadly adjusted regardless of the twisted shape, overcoming the conflict between photoconversion (favored by the twisted shape) and Z-isomer stability (favored by the orthogonal shape) encountered by mono-heteroaryl azo switches.

5.
Angew Chem Int Ed Engl ; 60(47): 24894-24900, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34545993

RESUMO

Herein, we report a feasible molecular design of the binuclear clusters featuring the n-p-n heterojunction of biligand-sandwiched inorganic units, which can be used as the effective charge trapper in ambipolar transistor memories with the large memory windows and the energy-saving operation. We found that the hole confinement on the p-type inorganic units is enhanced by spatial electronic anisotropy provided by the peripheral n-type organic phosphine ligands. The steric hindrance of the coordination sites, the insulating effect of the carbon-phosphorous single bonds and the parallel dual-ligand coordination mode jointly elongate the interunit distances to nanometer scale and restrain the intramolecular electronic communications, leading to the tunable and reliable charge trapping. Our results show that the spatial effect is crucial to further amplifying the electronic differences between organic and inorganic units for function enhancement.

6.
Angew Chem Int Ed Engl ; 60(27): 15080-15086, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33860594

RESUMO

Spontaneous deracemization has been used to separate homochiral domains from the racemic system. However, homochirality can only be referred to when the scales of these domains and systems are specified. To clarify this, we report self-assembly of racemates of dissymmetric cages DC-1 with a cone-shape propeller geometry, forming a centrosymmetric columnar crystalline phase (racemic at crystallographic level). Owing to their anisotropic geometry, the two enantiomers are packed in a frustrated fashion in this crystalline phase; single-handed double helices are observed (single-handedness at supramolecular level). The frustrated packing (layer continuity break-up) in turn facilitates screw dislocation during the crystal growth, forming left- or right-handed spiral platelets (symmetry-breaking at morphological level), although each platelet is composed of DC-1 racemates. The symmetry correlation between DC-1 molecules, the crystalline phase and spiral platelets, all exhibit C3 symmetry.

7.
J Am Chem Soc ; 142(28): 12256-12264, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32551567

RESUMO

Discovering physicochemical principles for simultaneous harvesting of multiform energy from the environment will advance current sustainable energy technologies. Here we explore photochemical phase transitions-a photochemistry-thermophysics coupled regime-for coharvesting of solar and thermal energy. In particular, we show that photon energy and ambient heat can be stored together and released on demand as high-temperature heat, enabled by room-temperature photochemical crystal↔liquid transitions of engineered molecular photoswitches. Integrating the two forms of energy in single-component molecular materials is capable of providing energy capacity beyond that of traditional solar or thermal energy storage systems based solely on molecular photoisomerization or phase change, respectively. Significantly, the ambient heat that is harvested during photochemical melting into liquid of the low-melting-point, metastable isomer can be released as high-temperature heat by recrystallization of the high-melting-point, parent isomer. This reveals that photon energy drives the upgrading of thermal energy in such a hybrid energy system. Rationally designed small-molecule azo switches achieve high gravimetric energy densities of 0.3-0.4 MJ/kg with long-term storage stability. Rechargeable solar thermal battery devices are fabricated, which upon light triggering provide gravimetric power density of about 2.7 kW/kg and temperature increases of >20 °C in ambient environment. We further show their use as deicing coatings. Our work demonstrates a new concept of energy utilization-combining solar energy and low-grade heat into higher-grade heat-which unlocks the possibility of developing sustainable energy systems powered by a combination of natural sunlight and ambient heat.

8.
World J Clin Cases ; 12(16): 2869-2875, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38899294

RESUMO

BACKGROUND: Vascular malformations (VMs) arise as a result of errors in the process of angiogenesis and are usually present at birth, but may not become apparent until after birth. However, giant VMs of the head and face are uncommon, with few reported cases, and the prognosis for their surgical intervention is unclear. CASE SUMMARY: A 12-year-old girl was admitted to the hospital with findings of an enlarged right temporal scalp. After admission, computed tomography (CT) angiography of cerebral ateries showed a right occlusal gap and a right temporal artery venous malformation. Furthermore, cerebral angiography showed a right temporal lobe VM with multiple vessels supplying blood. The patient underwent surgery to remove the malformed vessels and the eroded skull. Two hours after the surgery, the patient's right pupil was dilated, and an urgent CT scan of the skull showed a right subdural haematoma under the incision, which was urgently removed by a second operation. After surgery, we gave continuous antibiotic anti-infection treatment, and the patient recovered well and was discharged two weeks later. CONCLUSION: Surgical removal of giant haemangiomas is risky and adequate preoperative (including interventional embolisation) and intraoperative preparations should be made.

9.
Sci Rep ; 13(1): 5331, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005450

RESUMO

GDP-amylose transporter protein 1 (SLC35C1) plays an important role in many types of cancer. Therefore, it is clinically important to further investigate the expression profile of SLC35C1 in human tumors to provide new molecular clues for the pathogenesis of glioma. In this study, we performed a comprehensive pan-cancer analysis of SLC35C1 using a series of bioinformatics approaches and validated its differential tissue expression and biological function. The results showed that SLC35C1 was aberrantly expressed in different types of tumors and significantly correlated with overall survival (OS) and progression-free interval (PFI). More importantly, the expression level of SLC35C1 was closely correlated with Tumor Microenvironment (TME), immune infiltration and immune-related genes. In addition, we found that SLC35C1 expression was also closely related to Tumor Mutation Burden (TMB), Microsatellite Instability (MSI) and antitumor drug sensitivity in various cancer types. Functional bioinformatics analysis indicated that SLC35C1 may be involved in multiple signaling pathways and biological processes in glioma. Based on SLC35C1 expression, a risk factor model was found to predict OS of glioma. In addition, in vitro experiments showed that SLC35C1 knockdown significantly inhibited the proliferation, migration and invasive ability of glioma cells, while SLC35C1 overexpression promoted proliferation, migration, invasion and colony formation of glioma cells. Finally, quantitative real-time PCR confirmed that SLC35C1 was highly expressed in gliomas.


Assuntos
Glioma , Humanos , Prognóstico , Glioma/genética , Amilose , Biologia Computacional , Biomarcadores , Microambiente Tumoral/genética , Proteínas de Transporte de Monossacarídeos
10.
Front Neurosci ; 17: 1188590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877009

RESUMO

The study aims to develop a magnetic resonance imaging (MRI)-based radiomics model for the diagnosis of classic trigeminal neuralgia (cTN). This study involved 350 patients with cTN and 100 control participants. MRI data were collected retrospectively for all the enrolled subjects. The symptomatic side trigeminal nerve regions of patients and both sides of the trigeminal nerve regions of control participants were manually labeled on MRI images. Radiomics features of the areas labeled were extracted. Principle component analysis (PCA) and least absolute shrinkage and selection operator (LASSO) regression were utilized as the preliminary feature reduction methods to decrease the high dimensionality of radiomics features. Machine learning methods were established, including LASSO logistic regression, support vector machine (SVM), and Adaboost methods, evaluating each model's diagnostic abilities using 10-fold cross-validation. All the models showed excellent diagnostic ability in predicting trigeminal neuralgia. A prospective study was conducted, 20 cTN patients and 20 control subjects were enrolled to validate the clinical utility of all models. Results showed that the radiomics models based on MRI can predict trigeminal neuralgia with high accuracy, which could be used as a diagnostic tool for this disorder.

11.
Sci Adv ; 5(6): eaav9857, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31245537

RESUMO

Organic light-emitting diodes using cluster emitters have recently emerged as a flexible optoelectronic platform to extend their biological and optical applications. However, their inefficient cluster-centered excited states and deficient electrical properties limit device performance. Here, we introduce donor groups in organic ligands to form ligand-activated clusters, enabling the fabrication of the first cluster-based sky blue-emitting device with a record 30- and 8-fold increased luminance and external quantum efficiency up to ~7000 nits and ~8%, respectively. We show that the electron-donating effect of donor groups can enhance ligand-centered transitions and thoroughly eliminate cluster-centered excited states by delocalizing the molecular transition orbitals from the cluster unit to the ligand, leading to 13-fold increased photoluminescence quantum yield. In turn, the excellent rigidity and photostability of the cluster unit improve the color purity and efficiency stability of the devices. These results will motivate the further development of high-performance optoelectronic clusters by ligand engineering.

12.
Sci Adv ; 3(9): e1700904, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28929136

RESUMO

Allochroic organic light-emitting devices (AOLEDs) characterized by field-dependent emissive color variation are promising as visible signal response units for intelligent applications. Most of the AOLEDs were realized by changing their recombination zones or inter- and intramolecular energy transfer, rendering the limited repeatability, stability, and electroluminescence (EL) performance. We report a novel thermally activated delayed fluorescence (TADF) diode that featured a successive and irreversible emission color change from bluish green to deep blue during voltage increase, which uses the significant influence of host polarity on the emission color of TADF dyes, namely, solvatochromic effect. Its host 3,6-di-tert-butyl-1,8-bis(diphenylphosphoryl)-9H-carbazole (tBCzHDPO) was designed with remarkable field-dependent polarity reduction from 7.9 to 3.3 D by virtue of hydrogen bond-induced conformational isomerization. This TADF device achieves the best EL performance among AOLEDs, to date, with, for example, an external quantum efficiency beyond 15%, as well as the unique irreversible allochroic characteristic for visible data storage and information security.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA