RESUMO
Electrophilic addition of alkenes is a textbook reaction that plays a pivotal role in organic chemistry. In the past decades, catalytic asymmetric variants of this important type of reaction have witnessed great achievements by the development of novel catalytic systems. However, enantioselective aza-electrophilic additions of unactivated alkenes, which could provide a transformative strategy for the preparation of synthetically significant nitrogen-containing compounds, still remain a formidable challenge. Herein, we have developed unprecedented Au(I)/NHC-catalyzed asymmetric aza-electrophilic additions of unactivated 1,1-disubstituted styrenes by the utilization of readily available dialkyl azodicarboxylates as electrophilic nitrogen sources. Based on this approach, a series of transformations, including [2 + 2] cycloaddition, intermolecular 1,2-oxyamination, and several types of intramolecular hydrazination-induced cyclizations, have been realized. These transformations provide a previously unattainable platform for the divergent synthesis of hydrazine derivatives, which could also be converted to other nitrogen-containing chiral synthons. Experimental and computational studies support the idea that carbocation intermediates are involved in reaction pathways.
RESUMO
Here, we describe a cooperative Pd(0)/chiral phosphoric acid catalytic system that allows us to realize the first chemo-, regio-, and enantioselective sequential cross-[4 + 2]-cycloaddition/decarboxylation reaction between 2-pyrones and unactivated acyclic 1,3-dienes. The key to the success of this transformation is the utilization of an achiral N-heterocyclic carbene (NHC) as the ligand and a newly developed chiral phosphoric acid as the cocatalyst. Experimental investigations and computational studies support the idea that the Pd(0)/NHC complex acts as a π-Lewis base to increase the nucleophilicity of 1,3-dienes via η2 coordination, while the chiral phosphoric acid simultaneously increases the electrophilicity of 2-pyrones by hydrogen bonding. By this synergistic catalysis, the sequential cross-[4 + 2]-cycloaddition and decarboxylation reaction proceeds efficiently, enabling the preparation of a wide range of chiral vinyl-substituted 1,3-cyclohexadienes in good yields and enantioselectivities. The synthetic utility of this reaction is demonstrated by synthetic transformations of the product to various valuable chiral six-membered carbocycles.
RESUMO
Owing to substantial advances in the past several decades, transition-metal-catalyzed asymmetric reactions have garnered considerable attention as pivotal methods for constructing chiral molecules from abundant, readily available achiral counterparts. These advances are largely attributed to the development of chiral ligands that control stereochemistry through steric repulsion and other noncovalent interactions between the ligands and functional groups or prochiral centers on the substrates. However, stereocontrol weakens dramatically with increasing distance between the reaction site and the functional group or prochiral center. Herein, we report a symphonic strategy for remote stereocontrol of Rh(III)-catalyzed asymmetric benzylic C-H bond addition reactions of diarylmethanes in which the two aryl motifs differ at the meta and/or para position. Specifically, catalysts bearing a new type of chiral cyclopentadienyl (Cp) ligand differentiate between the two aromatic rings of the diarylmethane by arene-selective η6 coordination, setting up an opportunity for ligand-controlled stereoselective benzylic deprotonation and subsequent stereoselective addition to the 1,1-bis(arylsulfonyl)ethylene.
RESUMO
OBJECTIVE: Current study aims to investigate whether serum exosomal microRNAs (miRNAs) could be potential biomarkers in predicting APs with POF at early phase. BACKGROUND: Novel biomarkers are sorely needed for early prediction of persistent organ failure (POF) in acute pancreatitis (AP) patients. METHODS: In the discovery stage, exosomal miRNAs were profiled in sera from APs with or without POF (5 vs. 5) using microarrays. POF-associated miRNA signatures then were assessed in training cohort (n=227) and further validated in three independent cohorts (n=516), including one nested case-control cohort. RESULTS: A total of 743 APs were recruited in this large-scale biomarker identification study with a nested case-control study. Data from the discovery cohort demonstrated that 90 exosomal miRNAs were significantly dysregulated in APs with POF compared with controls. One miRNA classifier (Cmi) comprising 3 miRNAs (miR-4265, 1208, 3127-5p) was identified in the training cohort, and was further evaluated in two validation cohorts for their predictive value for POF. AUCs for Cmi ranged from 0.88 to 0.90, which was statistically superior to AUCs of APACHE-II and BISAP, and outperformed BUN and creatinine in POF prediction across all cohorts (P<.05). Higher levels of Cmi indicated increased need for ICU admission, prolonged hospitalization, and elevated mortality rate, thus poor prognosis. In the nested case-control study, Cmi could help identify prediagnostic POF in post-ERCP pancreatitis cases within "golden hours" after ERCP with high efficacy. CONCLUSIONS: Serum exosomal Cmi may be an early predictor for POF in AP, even within "golden hours" after AP onset. TRIAL REGISTRATION: ClinicalTrials.gov (NCT02602808).
RESUMO
BACKGROUND: Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS: mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS: Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION: Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.
Assuntos
Carboxiliases , Células Endoteliais , Pulmão , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Obesidade , Succinatos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Carboxiliases/metabolismo , Carboxiliases/genética , Obesidade/metabolismo , Obesidade/complicações , Masculino , Succinatos/farmacologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/irrigação sanguínea , Células Cultivadas , Microvasos/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , HidroliasesRESUMO
BACKGROUND AND AIMS: Current practice on Helicobacter pylori infection mostly focuses on individual-based care in the community, but family-based H. pylori management has recently been suggested as a better strategy for infection control. However, the family-based H. pylori infection status, risk factors and transmission pattern remain to be elucidated. METHODS: From September 2021 to December 2021, 10 735 families (31 098 individuals) were enrolled from 29 of 31 provinces in mainland China to examine family-based H. pylori infection, related factors and transmission pattern. All family members were required to answer questionnaires and test for H. pylori infection. RESULTS: Among all participants, the average individual-based H. pylori infection rate was 40.66%, with 43.45% for adults and 20.55% for children and adolescents. Family-based infection rates ranged from 50.27% to 85.06% among the 29 provinces, with an average rate of 71.21%. In 28.87% (3099/10 735) of enrolled families, there were no infections; the remaining 71.13% (7636/10 735) of families had 1-7 infected members, and in 19.70% (1504/7636), all members were infected. Among 7961 enrolled couples, 33.21% had no infection, but in 22.99%, both were infected. Childhood infection was significantly associated with parental infection. Independent risk factors for household infection were infected family members (eg, five infected members: OR 2.72, 95% CI 1.86 to 4.00), living in highly infected areas (eg, northwest China: OR 1.83, 95% CI 1.57 to 2.13), and large families in a household (eg, family of three: OR 1.97, 95% CI 1.76 to 2.21). However, family members with higher education and income levels (OR 0.85, 95% CI 0.79 to 0.91), using serving spoons or chopsticks, more generations in a household (eg, three generations: OR 0.79, 95% CI 0.68 to 0.92), and who were younger (OR 0.57, 95% CI 0.46 to 0.70) had lower infection rates (p<0.05). CONCLUSION: Familial H. pylori infection rate is high in general household in China. Exposure to infected family members is likely the major source of its spread. These results provide supporting evidence for the strategic changes from H. pylori individual-based treatment to family-based management, and the notion has important clinical and public health implications for infection control and related disease prevention.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Criança , Adulto , Adolescente , Humanos , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/prevenção & controle , Família , Fatores de Risco , China/epidemiologia , Estudos Epidemiológicos , PrevalênciaRESUMO
Herein, we report a highly efficient synthesis of enantioenriched aza-[3.3.1]-bicyclic enamines and ketones, a class of structural cores in many natural products, via asymmetric dearomatization of indoles with azodicarboxylates. The reaction is initiated by electrophilic amination and followed by aza-Prins cyclization/phenonium-like rearrangement. A newly developed fluorine-containing chiral phosphoric acid displays excellent activity in promoting this cascade reaction. The absence or presence of water as the additive directs the reaction pathway toward either enamine or ketone products in high yields (up to 93%) with high enantiopurity (up to 98% ee). Comprehensive density functional theory (DFT) calculations reveal the energy profile of the reaction and the origins of enantioselectivity and water-induced chemoselectivity.
RESUMO
Mechanism-guided reaction development is a well-appreciated research paradigm in chemistry since the merging of mechanistic knowledge would accelerate the discovery of new synthetic methods. Low-valent transition metals such as Pd(0)- and Rh(I)-catalyzed C-H arylation with aryl (pseudo)halides is among the enabling reactions for the exclusive cross-coupling of two different aryl partners. However, different from the situation of Pd(0)-catalysis, the mechanism of Rh(I)-catalyzed C-H arylation is underexplored. The sequence of the elementary steps of aryl C-H activation and oxidative addition of aryl (pseudo)halides remains unclear. Herein, we report comprehensive experimental and computational studies toward explicit mechanistic understandings of Rh(I)-catalyzed intermolecular asymmetric C-H arylation between 2-pyridinylferrocenes and aryl bromides. The identification of each elementary step in the catalytic cycle and the structural characterization of the key intermediates and transition states allow the rational design and development of challenging intramolecular reactions. The successful realization of this reaction mode set the foundation for the facile synthesis of planar chiral [m]ferrocenophanes (m = 6-8), a class of rarely explored target molecules with strained structures and intriguing molecular topology.
RESUMO
Exogenous antioxidant materials mimicking endogenous antioxidant systems are commonly used for the treatment of oxidative stress-induced injuries. Thus, artificial enzymes have emerged as promising candidates for balancing and treating the dysregulation of redox homeostasis in vivo. Herein, a one-pot hydrothermal strategy for the facile preparation of MoSe2-polyvinylpyrrolidone (PVP) nanoparticles (NPs) is reported. The synthesized NPs were biodegradable due to their exposure to oxygen and exhibited high stability. Moreover, they effectively mimicked various naturally occurring enzymes (including catalase, superoxide dismutase, peroxidase, and glutathione peroxidase) and scavenged free radicals, such as 3-ethylbenzothiazoline-6-sulfonic acid, ·OH, ·O2-, and 1,1-diphenyl-2-picrylhydrazyl radical. Further apoptosis detection studies revealed that MoSe2-PVP NPs significantly increased the cell survival probability in H2O2 in a concentration-dependent manner. The cytoprotective effect of MoSe2-PVP NPs was explored for an animal model of acute pancreatitis, which confirmed its remarkable therapeutic efficacy. Owing to the biodegradable and biocompatible nature of MoSe2-PVP NPs, the findings of this work can stimulate the development of other artificial nanoenzymes for antioxidant therapies.
Assuntos
Nanopartículas , Pancreatite , Doença Aguda , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Peróxido de Hidrogênio , Estresse Oxidativo , Pancreatite/tratamento farmacológico , Povidona , Espécies Reativas de OxigênioRESUMO
Two heteroctanuclear Au4Ag4 cluster complexes of 4,5-diethynylacridin-9-one (H2L) were prepared through the self-assembly reactions of [Au(tht)2](CF3SO3), Ag(tht)(CF3SO3), H2L and PPh3 or PPh2Py (2-(diphenylphosphino)pyridine). The Au4Ag4 cluster consists of a [Au4L4]4- and four [Ag(PPh3)]+ or [Ag(PPh2Py)]+ units with Au4L4 framework exhibiting a twisted paper clip structure. In CH2Cl2 solutions at ambient temperature, both compounds show ligand fluorescence at ca. 463 nm as well as phosphorescence at 650 nm for 1 and 630 nm for 2 resulting from admixture of 3IL (intraligand) of L ligand, 3LMCT (from L ligand to Au4Ag4) and 3MC (metal-cluster) triplet states. Crystals or crystalline powders manifest bright yellow-green phosphorescence with vibronic-structured emission bands at 530 (568sh) nm for complex 1 and 536 (576sh) nm for complex 2. Upon mechanical grinding, yellow-green emission in the crystalline state is dramatically converted to red luminescence centered at ca. 610 nm with a drastic redshift of the emission after crystal packing is destroyed.
Assuntos
Luminescência , LigantesRESUMO
Enantioselective hydroarylation of unactivated terminal akenes constitutes a prominent challenge in organic chemistry. Herein, we reported a Cp*Co(III)-catalyzed asymmetric hydroarylation of unactivated aliphatic terminal alkenes assisted by a new type of tailor-made amino acid ligands. Critical to the chiral induction was the engaging of a novel noncovalent interaction (NCI), which has seldomly been disclosed in the C-H activation area, arising from the molecular recognition among the organocobalt(III) intermediate, the coordinated alkene, and the well-designed chiral ligand. A broad range of C2-alkylated indoles were obtained in high yields and excellent enantioselectivities. DFT calculations revealed the reaction mechanism and elucidated the origins of chiral induction in the stereodetermining alkene insertion step.
RESUMO
BACKGROUND AIMS: Stem cell transplantation is a potential treatment for intractable spinal cord injury (SCI), and allogeneic human umbilical cord mesenchymal stem cells (hUC-MSCs) are a promising candidate because of the advantages of immune privilege, paracrine effect, immunomodulatory function, convenient collection procedure and little ethical concern, and there is an urgent need to develop a safe and effective protocol regarding their clinical application. METHODS: A prospective, single-center, single-arm study in which subjects received four subarachnoid transplantations of hUC-MSCs (1 × 106 cells/kg) monthly and were seen in follow-up four times (1, 3, 6 and 12 months after final administration) was conducted. At each scheduled time point, safety and efficacy indicators were collected and analyzed accordingly. Adverse events (AEs) were used as a safety indicator. American Spinal Injury Association (ASIA) and SCI Functional Rating Scale of the International Association of Neurorestoratology (IANR-SCIFRS) total scores at the fourth follow-up were determined as primary efficacy outcomes, whereas these two indicators at the remaining time points as well as scores of pinprick, light touch, motor and sphincter, muscle spasticity and spasm, autonomic system, bladder and bowel functions, residual urine volume (RUV) and magnetic resonance imaging (MRI) were secondary efficacy outcomes. Subgroup analysis of primary efficacy indicators was also performed. RESULTS: Safety and efficacy assessments were performed on 102 and 41 subjects, respectively. Mild AEs involving fever (14.1%), headache (4.2%), transient increase in muscle tension (1.6%) and dizziness (1.3%) were observed following hUC-MSC transplantation and resolved thoroughly after conservative treatments. There was no serious AE. ASIA and IANR-SCIFRS total scores revealed statistical increases when compared with the baselines at different time points during the study, mainly reflected in the improvement of pinprick, light touch, motor and sphincter scores. Moreover, subjects showed a continuous and remarkable decrease in muscle spasticity. Regarding muscle spasm, autonomic system, bladder and bowel functions, RUV and MRI, data/imaging at final follow-up showed significant improvements compared with those at first collection. Subgroup analysis found that hUC-MSC transplantation improved neurological functions regardless of injury characteristics, including level, severity and chronicity. CONCLUSIONS: The authors' present protocol demonstrates that intrathecal administration of' allogeneic hUC-MSCs at a dose of 106 cells/kg once a month for 4 months is safe and effective and leads to significant improvement in neurological dysfunction and recovery of quality of life.
Assuntos
Células-Tronco Mesenquimais , Traumatismos da Medula Espinal/terapia , Cordão Umbilical/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Qualidade de Vida , Espaço Subaracnóideo/fisiopatologia , Adulto JovemRESUMO
The conversion of skeletal muscle fiber from fast twitch to slow-twitch is important for sustained and tonic contractile events, maintenance of energy homeostasis, and the alleviation of fatigue. Skeletal muscle remodeling is effectively induced by endurance or aerobic exercise, which also generates several tricarboxylic acid (TCA) cycle intermediates, including succinate. However, whether succinate regulates muscle fiber-type transitions remains unclear. Here, we found that dietary succinate supplementation increased endurance exercise ability, myosin heavy chain I expression, aerobic enzyme activity, oxygen consumption, and mitochondrial biogenesis in mouse skeletal muscle. By contrast, succinate decreased lactate dehydrogenase activity, lactate production, and myosin heavy chain IIb expression. Further, by using pharmacological or genetic loss-of-function models generated by phospholipase Cß antagonists, SUNCR1 global knockout, or SUNCR1 gastrocnemius-specific knockdown, we found that the effects of succinate on skeletal muscle fiber-type remodeling are mediated by SUNCR1 and its downstream calcium/NFAT signaling pathway. In summary, our results demonstrate succinate induces transition of skeletal muscle fiber via SUNCR1 signaling pathway. These findings suggest the potential beneficial use of succinate-based compounds in both athletic and sedentary populations.
Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Ácido Succínico/farmacologia , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND AND AIM: It has been reported that serum quantification of anti-HBc (qAnti-HBc) could predict antiviral response in chronic hepatitis B (CHB) patients, while its role in hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) remains unclear. Its implication in HBV-ACLF was evaluated in this study. METHODS: Baseline serum qAnti-HBc levels were retrospectively detected in HBV-ACLF and CHB patients using recently developed double-sandwich immunoassay. The association of qAnti-HBc level with clinical outcomes was evaluated by multiple logistic regression. Nomogram was adopted to formulate an algorithm incorporating qAnti-HBc for the prediction of survival in HBV-ACLF. The post-hospitalization of HBV-ACLF patients were followed-up for 1 year. RESULTS: Eighty-eight HBV-ACLF as training set, 80 HBV-ACLF as validation set and 216 CHB cases were included. Serum qAnti-HBc level was significantly higher in HBV-ACLF (4.95 ± 0.54 log10 IU/mL) than CHB patients (4.47 ± 0.84 log10 IU/mL) (P < 0.01). Among HBV-ACLF cases, both in training and validation set, patients with poor outcomes had lower qAnti-HBc level. Area under receiver operating characteristic curve of the novel qAnti-HBc inclusive model was 0.82, superior to 0.73 from model for end-stage liver disease scores (P = 0.018), which was confirmed in validation set. During follow-up, the qAnti-HBc level declined at month 3 and month 6, then plateaued at 3.84 log10 IU/mL. CONCLUSIONS: Serum qAnti-HBc level was associated with disease severity and might be served as a novel biomarker in the prediction of HBV-ACLF clinical outcomes. The underlying immunological mechanism warrants further investigation.
Assuntos
Insuficiência Hepática Crônica Agudizada/diagnóstico , Insuficiência Hepática Crônica Agudizada/etiologia , Anticorpos Anti-Hepatite B/sangue , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/complicações , Hepatite B Crônica/diagnóstico , Adulto , Biomarcadores/sangue , Feminino , Seguimentos , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Índice de Gravidade de DoençaRESUMO
A novel scheme of an ultralow relative intensity noise (RIN) broadband source module employing a double pumped backward (DPB) Er-doped superfluorescence fiber source (EDSFS) and a semiconductor optical amplifier for interferometric fiber optic gyroscopes (IFOGs) is proposed. With optimized parameters, the optimal twin-peak output profile of the source is obtained. The effective optical spectrum width of the source is 38.6 nm, and the output power is about 12.5 mW. Compared with the DPB EDSFS with a similar spectrum, the ultralow RIN broadband source proposed demonstrates a lower RIN of about 8.4 dB. A high-precision IFOG utilizing the ultralow RIN broadband source is set up, and the performance of the IFOG is experimentally studied. An angle random walk coefficient of 6.93×10-5o/h1/2 is demonstrated, which is reduced by about 31.5% compared with the same IFOG system utilizing conventional DPB EDSFS with a similar spectrum profile. The ultralow RIN broadband source module proposed is quite feasible for high-precision IFOGs used in strategic-grade navigation systems and satellites.
RESUMO
STATEMENT OF PROBLEM: Reports on digital complete dentures (CDs) are increasing. However, systematic reviews on their accuracy and influencing factors are lacking. PURPOSE: The purpose of this systematic review was to evaluate the accuracy of digital CDs and to summarize influencing factors. MATERIAL AND METHODS: An electronic search of the English language literature from January 2009 to October 2019 was performed in the database PubMed/MEDLINE, with the results enriched by manual searches and citation mining. Factors investigated in the selected articles included the fabrication technique, type of computer-aided design and computer-aided manufacturing (CAD-CAM) system, shape of reference model, long-term service, analytical method, and statistical indicators. RESULTS: A total of 522 articles were identified, of which 14 in vitro articles met the inclusion criteria. Eight articles compared the adaptation of the denture base between digital and conventional methods, 4 studies evaluated the occlusal discrepancies, 4 compared the trueness or adaptation of the denture fabricated with CAD-CAM milling and 3D printing, 1 compared the denture adaptation with 4 different CAD-CAM systems, and 2 evaluated the adaptation of the denture base before and after incubation in artificial saliva. CONCLUSIONS: Most of the studies reported clinically acceptable values for the occlusal trueness and adaptation of digital CDs. The digital CDs showed similar or better adaptation than conventionally fabricated CDs, and the greatest misfit of the intaglio surface was reported in the posterior palatal seal area and border seal area. The fabrication technique, CAD-CAM system, and long-term service were statistically significant in relation to denture accuracy. Clarification is needed concerning the accuracy of digital CDs according to the shape of the cast, the parameters related to the CAD-CAM process, the analytical method, and the statistical indicators. No clear conclusions can be drawn about the superiority of CAD-CAM milling and 3D printing regarding denture accuracy.
Assuntos
Planejamento de Dentadura , Prótese Total , Desenho Assistido por Computador , Impressão Tridimensional , Projetos de PesquisaRESUMO
The direct conversion of alkyl esters to ketones has been hindered by the sluggish reactivity of the starting materials and the susceptibility of the product towards subsequent nucleophilic attack. We have now achieved a cross-coupling approach to this transformation using nickel, a bulky N-heterocyclic carbene ligand, and alkyl organoboron coupling partners. 65 alkyl ketones bearing diverse functional groups and heterocyclic scaffolds have been synthesized with this method. Catalyst-controlled chemoselectivity is observed for C(acyl)-O bond activation of multi-functional substrates bearing other bonds prone to cleavage by Ni, including aryl ether, aryl fluoride, and N-Ph amide functional groups. Density functional theory calculations provide mechanistic support for a Ni0 /NiII catalytic cycle and demonstrate how stabilizing non-covalent interactions between the bulky catalyst and substrate are critical for the reaction's success.
RESUMO
Asymmetric hydrogenation of olefins is one of the most powerful asymmetric transformations in molecular synthesis. Although several privileged catalyst scaffolds are available, the catalyst development for asymmetric hydrogenation is still a time- and resource-consuming process due to the lack of predictive catalyst design strategy. Targeting the data-driven design of asymmetric catalysis, we herein report the development of a standardized database that contains the detailed information of over 12000 literature asymmetric hydrogenations of olefins. This database provides a valuable platform for the machine learning applications in asymmetric catalysis. Based on this database, we developed a hierarchical learning approach to achieve predictive machine leaning model using only dozens of enantioselectivity data with the target olefin, which offers a useful solution for the few-shot learning problem and will facilitate the reaction optimization with new olefin substrate in catalysis screening.
RESUMO
The transition-metal-catalyzed C-N cross-coupling has revolutionized the construction of amines. Despite the innovations of multiple generations of ligands to modulate the reactivity of the metal center, ligands for the low-temperature enantioselective amination of aryl halides remain a coveted target of catalyst engineering. Designs that promote one elementary reaction often create bottlenecks at other steps. We here report an unprecedented low-temperature (as low as -50 °C), enantioselective Ni-catalyzed C-N cross-coupling of aryl chlorides with sterically hindered secondary amines via a kinetic resolution process (s factor up to >300). A bulky yet flexible chiral N-heterocyclic carbene (NHC) ligand is leveraged to drive both oxidative addition and reductive elimination with low barriers and control the enantioselectivity. Computational studies indicate that the rotations of multiple σ-bonds on the C2 -symmetric chiral ligand adapt to the changing needs of catalytic processes. We expect this design would be widely applicable to diverse transition states to achieve other challenging metal-catalyzed asymmetric cross-coupling reactions.
RESUMO
Herein we report a highly enantioselective kinetic resolution of tertiary benzyl alcohols via palladium/chiral norbornene cooperative catalysis. With simple aryl iodides as the resolution reagent, a wide range of readily available racemic tertiary benzyl alcohols are applicable to this method. Both chiral tertiary benzyl alcohols and benzo[c]chromene products are obtained in good to excellent enantioselectivities (selectivity factor up to 544). The appealing synthetic utility of the obtained enantioenriched tertiary alcohols is demonstrated by the facile preparation of several valuable chiral heterocycles. Preliminary mechanism studies include DFT calculations to explain the origin of enantiodiscrimination and control experiments to uncover the formation of a transient axial chirality during the kinetic resolution step.