Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Ann Neurol ; 94(1): 91-105, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37014252

RESUMO

OBJECTIVE: The precise intervention of K-Cl cotransporter isoform 2 (KCC2) as a promising target for drug-resistant epilepsy remains elusive. METHODS: Here, we used a CRISPRa system delivered by adeno-associated viruses to specifically upregulate KCC2 in the subiculum to confirm its therapeutic potential in various in vivo epilepsy models. Calcium fiber photometry was used to reveal the role of KCC2 in the restoration of impaired GABAergic inhibition. RESULTS: CRISPRa system effectively upregulated KCC2 expression both in in vitro cell culture and in vivo brain region. Delivery of CRISPRa with adeno-associated viruses resulted in upregulating the subicular KCC2 level, contributing to alleviating the severity of hippocampal seizure and facilitating the anti-seizure effect of diazepam in a hippocampal kindling model. In a kainic acid-induced epilepticus status model, KCC2 upregulation greatly increased the termination percentage of diazepam-resistant epilepticus status with the broadened therapeutic window. More importantly, KCC2 upregulation attenuated valproate-resistant spontaneous seizure in a kainic acid-induced chronic epilepsy model. Finally, calcium fiber photometry showed CRISPRa-mediated KCC2 upregulation partially restored the impaired GABAA -mediated inhibition in epilepsy. INTERPRETATION: These results showed the translational potential of adeno-associated viruses-mediated delivery of CRISPRa for treating neurological disorders by modulating abnormal gene expression that is directly associated with neuronal excitability, validating KCC2 as a promising therapeutic target for treating drug-resistant epilepsy. ANN NEUROL 2023;94:91-105.


Assuntos
Epilepsia , Simportadores , Camundongos , Animais , Regulação para Cima , Preparações Farmacêuticas/metabolismo , Ácido Caínico/toxicidade , Cálcio/metabolismo , Epilepsia/genética , Hipocampo/metabolismo , Simportadores/genética , Simportadores/metabolismo , Diazepam
2.
Proc Natl Acad Sci U S A ; 117(5): 2395-2405, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31941712

RESUMO

We herein report an optogenetically activatable CRISPR-Cas9 nanosystem for programmable genome editing in the second near-infrared (NIR-II) optical window. The nanosystem, termed nanoCRISPR, is composed of a cationic polymer-coated Au nanorod (APC) and Cas9 plasmid driven by a heat-inducible promoter. The APC not only serves as a carrier for intracellular plasmid delivery but also can harvest external NIR-II photonic energy and convert it into local heat to induce the gene expression of the Cas9 endonuclease. Due to high transfection activity, the APC shows strong ability to induce a significant level of disruption in different genomic loci upon optogenetic activation. Moreover, the precise control of genome-editing activity can be simply programmed by finely tuning exposure time and irradiation time in vitro and in vivo and also enables editing at multiple time points, thus proving the sensitivity and inducibility of such an editing modality. The NIR-II optical feature of nanoCRISPR enables therapeutic genome editing at deep tissue, by which treatment of deep tumor and rescue of fulminant hepatic failure are demonstrated as proof-of-concept therapeutic examples. Importantly, this modality of optogenetic genome editing can significantly minimize the off-target effect of CRISPR-Cas9 in most potential off-target sites. The optogenetically activatable CRISPR-Cas9 nanosystem we have developed offers a useful tool to expand the current applications of CRISPR-Cas9, and also defines a programmable genome-editing strategy toward high precision and spatial specificity.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Nanotubos/química , Optogenética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/efeitos da radiação , Ouro/química , Células HEK293 , Humanos , Raios Infravermelhos , Plasmídeos/genética , Regiões Promotoras Genéticas
3.
FASEB J ; 33(6): 6962-6968, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30844313

RESUMO

Precise single-base editing in Xenopus tropicalis would greatly expand the utility of this true diploid frog for modeling human genetic diseases caused by point mutations. Here, we report the efficient conversion of C-to-T or G-to-A in X. tropicalis using the rat apolipoprotein B mRNA editing enzyme catalytic subunit 1-XTEN-clustered regularly interspaced short palindromic repeat-associated protein 9 (Cas9) nickase-uracil DNA glycosylase inhibitor-nuclear localization sequence base editor [base editor 3 (BE3)]. Coinjection of guide RNA and the Cas9 mutant complex mRNA into 1-cell stage X. tropicalis embryos caused precise C-to-T or G-to-A substitution in 14 out of 19 tested sites with efficiencies of 5-75%, which allowed for easy establishment of stable lines. Targeting the conserved T-box 5 R237 and Tyr C28 residues in X. tropicalis with the BE3 system mimicked human Holt-Oram syndrome and oculocutaneous albinism type 1A, respectively. Our data indicate that BE3 is an easy and efficient tool for precise base editing in X. tropicalis.-Shi, Z., Xin, H., Tian, D., Lian, J., Wang, J., Liu, G., Ran, R., Shi, S., Zhang, Z., Shi, Y., Deng, Y., Hou, C., Chen, Y. Modeling human point mutation diseases in Xenopus tropicalis with a modified CRISPR/Cas9 system.


Assuntos
Anormalidades Múltiplas/genética , Albinismo Oculocutâneo/genética , Sistemas CRISPR-Cas , Cardiopatias Congênitas/genética , Comunicação Interatrial/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Mutação Puntual , Deformidades Congênitas das Extremidades Superiores/genética , Xenopus/embriologia , Animais , Sequência de Bases , Feminino , Genótipo , Humanos , Masculino
4.
J Gene Med ; 21(7): e3107, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31237055

RESUMO

The clustered, regularly-interspaced, short palindromic repeat (CRISPR)-associated nuclease 9 (CRISPR/Cas9) is emerging as a promising genome-editing tool for treating diseases in a precise way, and has been applied to a wide range of research in the areas of biology, genetics, and medicine. Delivery of therapeutic genome-editing agents provides a promising platform for the treatment of genetic disorders. Although viral vectors are widely used to deliver CRISPR/Cas9 elements with high efficiency, they suffer from several drawbacks, such as mutagenesis, immunogenicity, and off-target effects. Recently, non-viral vectors have emerged as another class of delivery carriers in terms of their safety, simplicity, and flexibility. In this review, we discuss the modes of CRISPR/Cas9 delivery, the barriers to the delivery process and the application of CRISPR/Cas9 system for the treatment of genetic disorders. We also highlight several representative types of non-viral vectors, including polymers, liposomes, cell-penetrating peptides, and other synthetic vectors, for the therapeutic delivery of CRISPR/Cas9 system. The applications of CRISPR/Cas9 in treating genetic disorders mediated by the non-viral vectors are also discussed.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Técnicas de Transferência de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/tendências , Técnicas de Transferência de Genes/efeitos adversos , Técnicas de Transferência de Genes/tendências , Vetores Genéticos , Humanos , Lipossomos/química , Nanopartículas Metálicas/química , Peptídeos/química , Peptídeos/genética , Polímeros/química
5.
Genesis ; 55(1-2)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095621

RESUMO

With the successful establishment of both targeted gene disruption and integration methods in the true diploid frog Xenopus tropicalis, this excellent vertebrate genetic model now is making a unique contribution to modelling human diseases. Here, we summarize our efforts on establishing homologous recombination-mediated targeted integration in Xenopus tropicalis, the usefulness, and limitation of targeted integration via the homology-independent strategy, and future directions on how to further improve targeted gene integration in Xenopus tropicalis.


Assuntos
Marcação de Genes , Proteínas de Xenopus/genética , Xenopus/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Xenopus/crescimento & desenvolvimento , Proteínas de Xenopus/biossíntese
6.
Arch Insect Biochem Physiol ; 93(3): 160-173, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27558456

RESUMO

The apoptosis mechanisms in mammals were investigated relatively clearly. However, little is known about how apoptosis is achieved at a molecular level in silkworm cells. We cloned a caspase homologous gene named BmDredd (where Bm is Bombyx mori and Dredd is death-related ced-3/Nedd2-like caspase) in BmN cells from the ovary of Bm and analyzed its biological information. We constructed the N-terminal, C-terminal, and overexpression vector of BmDredd, respectively. Our results showed that the transcriptional expression level of BmDredd was increased in the apoptotic BmN cells. Furthermore, overexpression of BmDredd increased the caspase-3/7 activity. Simultaneously, RNAi of BmDredd could save BmN cells from apoptosis. The immunofluorescence study showed that BmDredd located at the cytoplasm in normal cell otherwise is found at the nucleus when cells undergo apoptosis. Moreover, we quantified the transcriptional expressions of apoptosis-related genes including BmDredd, BmDaxx (where Daxx is death-domain associated protein), BmCide-b (where Cide-b is cell death inducing DFF45-like effector), BmFadd (Fadd is fas-associated via death domain), and BmCreb (where Creb is cAMP-response element binding protein) in BmN cells with dsRNA interferences to detect the molecular mechanism of apoptosis. In conclusion, BmDredd may function for promoting apoptosis and there are various regulatory interactions among these apoptosis-related genes.


Assuntos
Apoptose , Bombyx/fisiologia , Caspases/genética , Proteínas de Insetos/genética , Sequência de Aminoácidos , Animais , Bombyx/genética , Caspases/química , Caspases/metabolismo , Linhagem Celular , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência
7.
Arch Insect Biochem Physiol ; 89(2): 98-110, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25735242

RESUMO

Rab3 GTPases are known to play key a role in vesicular trafficking, and express highest in brain and endocrine tissues. In mammals, Rab3 GTPases are paralogs unlike in insect. In this study, we cloned Rab3 from the silk gland tissue of silkworm Bombyx mori, and identified it as BmRab3. Our in silico analysis indicated that BmRab3 is an isoform with a theoretical isoelectric point and molecular weight of 5.52 and 24.3 kDa, respectively. Further, BmRab3 showed the C-terminal hypervariability for GGT2 site but having two other putative guanine nucleotide exchange factor/GDP dissociation inhibitor interaction sites. Multiple alignment sequence indicated high similarities of BmRab3 with Rab3 isoforms of other species. The phylogeny tree showed BmRab3 clustered between the species of Tribolium castaneum and Aedes aegypti. Meanwhile, the expression analysis of BmRab3 showed the highest expression in middle silk glands (MSGs) than all other tissues in the third day of fifth-instar larva. Simultaneously, we showed the differential expression of BmRab3 in the early instar larva development, followed by higher expression in male than female pupae. In vivo dsRNA interference of BmRab3 reduced the expression of BmRab3 by 75% compared to the control in the MSGs in the first day. But as the worm grew to the third day, the difference of BmRab3 between knockdown and control was only about 10%. The knockdown later witnessed underdevelopment of the larvae and pharate pupae lethality in the overall development of silkworm B. mori L.


Assuntos
Bombyx/fisiologia , Proteínas de Insetos/fisiologia , Proteínas rab3 de Ligação ao GTP/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Técnicas de Silenciamento de Genes , Larva/fisiologia , Masculino , Dados de Sequência Molecular , Pupa/metabolismo , Interferência de RNA , Análise de Sequência de DNA
8.
Arch Insect Biochem Physiol ; 90(2): 59-69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25917878

RESUMO

Salivary gland secretion is altered in Drosophila embryos with loss of function of the sage gene. Saliva has a reduced volume and an increased electron density according to transmission electron microscopy, resulting in regions of tube dilation and constriction with intermittent tube closure. However, the precise functions of Bmsage in silkworm (Bombyx mori) are unknown, although its sequence had been deposited in SilkDB. From this, Bmsage is inferred to be a transcription factor that regulates the synthesis of silk fibroin and interacts with another silk gland-specific transcription factor, namely, silk gland factor-1. In this study, we introduced a germline mutation of Bmsage using the Cas9/sgRNA system, a genome-editing technology, resulting in deletion of Bmsage from the genome of B. mori. Of the 15 tested samples, seven displayed alterations at the target site. The mutagenesis efficiency was about 46.7% and there were no obvious off-target effects. In the screened homozygous mutants, silk glands developed poorly and the middle and posterior silk glands (MSG and PSG) were absent, which was significantly different from the wild type. The offspring of G0 mosaic silkworms had indel mutations causing 2- or 9-bp deletions at the target site, but exhibited the same abnormal silk gland structure. Mutant larvae containing different open-reading frames of Bmsage had the same silk gland phenotype. This illustrated that the mutant phenotype was due to Bmsage knockout. We conclude that Bmsage participates in embryonic development of the silk gland.


Assuntos
Bombyx/fisiologia , Glândulas Exócrinas/embriologia , Proteínas de Insetos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Bombyx/embriologia , Bombyx/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Embrião não Mamífero , Glândulas Exócrinas/fisiologia , Feminino , Proteínas de Insetos/genética , Larva/genética , Larva/crescimento & desenvolvimento , Mutação , Fatores de Transcrição/genética
9.
Adv Mater ; 36(5): e2310078, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947048

RESUMO

Chimeric antigen receptor (CAR)-T cell immunotherapy is approved in the treatment of hematological malignancies, but remains far from satisfactory in solid tumor treatment due to inadequate intra-tumor CAR-T cell infiltration. Herein, an injectable supramolecular hydrogel system, based on self-assembly between cationic polymer mPEG-PCL-PEI (PPP) conjugated with T cell targeting anti-CD3e f(ab')2 fragment and α-cyclodextrin (α-CD), is designed to load plasmid CAR (pCAR) with a T cell specific CD2 promoter, which successfully achieves in situ fabrication and effective accumulation of CAR-T cells at the tumor site in humanized mice models. More importantly, due to this tumor microenvironment reprogramming, secretion of cellular inflammatory cytokines (interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ)) or tumor killer protein granzyme B is significantly promoted, which reverses the immunosuppressive microenvironment and significantly enhances the intra-tumor CAR-T cells and cytotoxic T cells infiltration. To the best of the current knowledge, this is a pioneer report of using injectable supramolecular hydrogel for in situ reprogramming CAR-T cells, which might be beneficial for solid tumor CAR-T immunotherapy.


Assuntos
Hidrogéis , Neoplasias , Animais , Camundongos , Citocinas/metabolismo , Imunoterapia , Neoplasias/patologia , Linfócitos T Citotóxicos/metabolismo , Microambiente Tumoral , Humanos
10.
Mol Biol Rep ; 40(6): 4115-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23640098

RESUMO

Insect molting is an important developmental process of metamorphosis, which is initiated by molting hormone. Molting includes the activation of dermal cells, epidermal cells separation, molting fluid secretion, the formation of new epidermis and old epidermis shed and other series of continuous processes. Polyphenol oxidases, dopa decarboxylase and acetyltransferase are necessary enzymes for this process. Traditionally, the dopa decarboxylase (BmDdc) was considered as an enzyme for epidermal layer's tanning and melanization. This work suggested that dopa decarboxylase is one set of the key enzymes in molting, which closely related with the regulation of ecdysone at the time of biological molting processes. The data showed that the expression peak of dopa decarboxylase in silkworm is higher during molting stage, and decreases after molting. The significant increase in the ecdysone levels of haemolymph was also observed in the artificially fed silkworm larvae with ecdysone hormone. Consistently, the dopa decarboxylase expression was significantly elevated compared to the control. BmDdc RNAi induced dopa decarboxylase expression obviously declined in the silkworm larvae, and caused the pupae appeared no pupation or incomplete pupation. BmDdc was mainly expressed and stored in the peripheral plasma area near the nucleus in BmN cells. In larval, BmDdc was mainly located in the brain and epidermis, which is consisted with its function in sclerotization and melanization. Overall, the results described that the dopa decarboxylase expression is regulated by the molting hormone, and is a necessary enzyme for the silkworm molting.


Assuntos
Bombyx/enzimologia , Dopa Descarboxilase/genética , Ecdisona/farmacologia , Animais , Western Blotting , Bombyx/efeitos dos fármacos , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Dopa Descarboxilase/metabolismo , Ecdisona/administração & dosagem , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Transporte Proteico/efeitos dos fármacos , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Arch Insect Biochem Physiol ; 84(2): 78-89, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24038161

RESUMO

Molting in insects is regulated by molting hormones (ecdysteroids), which are also crucial to insect growth, development, and reproduction etc. The decreased ecdysteroid in titre results from enhanced ecdysteroid inactivation reactions including the formation of 3-epiecdyson under ecdysone oxidase and 3-dehydroecdysone 3α-reductase (3DE 3α-reductase). In this paper, we cloned and characterized 3-dehydroecdysone 3α-reductase (3DE 3α-reductase) in different tissues and developing stage of the silkworm, Bombyx mori L. The B. mori 3DE 3α-reductase cDNA contains an ORF 783 bp and the deduced protein sequence containing 260 amino acid residues. Analysis showed the deduced 3DE 3α-reductase belongs to SDR family, which has the NAD(P)-binding domain. Using the Escherichia coli, a high level expression of a fusion polypeptide band of approx. 33 kDa was observed. High transcription of 3DE 3α-reductase was mainly presented in the midgut and hemolymph in the third day of fifth instar larvae in silkworm. The expression of 3DE 3α-reductase at different stages of larval showed that the activity in the early instar was high, and then reduced in late instar. This is parallel to the changes of molting hormone titer in larval. 3DE 3α-reductase is key enzyme in inactivation path of ecdysteroid. The data elucidate the regulation of 3DE 3α-reductase in ecdyteroid titer of its targeting organs and the relationship between the enzyme and metamorphosis.


Assuntos
3-Hidroxiesteroide Desidrogenases/genética , Bombyx/metabolismo , Ecdisona/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Sequência de Aminoácidos , Animais , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Clonagem Molecular , DNA Complementar/genética , Ecdisona/genética , Ecdisteroides , Escherichia coli , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/metabolismo , Dados de Sequência Molecular , Muda
12.
Nat Nanotechnol ; 18(8): 933-944, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37188968

RESUMO

Adoptive T-cell therapy against solid tumours is limited by the apoptosis resistance mechanisms of tumour cells and by the extracellular, immunosuppressive tumour microenvironment. Here we report a temperature-sensitive genome-editing nanodevice that can deliver a Cas9 editor with an external trigger which can be used to edit the genome of tumour cells to reduce resistance to apoptosis and modulate the tumour microenvironment via a mild heating trigger. After local or systemic delivery of Cas9, mild heating is induced by non-invasive near-infrared (NIR) light or focused ultrasound (FUS) to activate Cas9, which initiates simultaneous genome editing of HSP70 (HSPA1A) and BAG3 in tumour cells. This disrupts the apoptotic resistance machinery of the tumour cells against adoptive T cells. At the same time, an NIR- or FUS-induced mild thermal effect reshapes the extracellular tumour microenvironment by disrupting the physical barriers and immune suppression. This facilitates the infiltration of adoptive T cells and enhances their therapeutic activity. Mild thermal Cas9 delivery is demonstrated in different murine tumour models which mimic a range of clinical indications, including a tumour model based on humanized patient-derived xenografts. As a result, the non-invasive thermal delivery of Cas9 significantly enhances the therapeutic efficacies of tumour-infiltrating lymphocytes and chimeric antigen receptor T and shows potential for clinical application.


Assuntos
Edição de Genes , Neoplasias , Humanos , Camundongos , Animais , Imunoterapia Adotiva , Neoplasias/genética , Neoplasias/terapia , Linfócitos T , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose/genética
13.
Sci Adv ; 7(50): eabj0624, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34878850

RESUMO

Regulation of CRISPR-Cas9 functions in vivo is conducive to developing precise therapeutic genome editing. Here, we report a CRISPR-Cas9 prodrug nanosystem (termed NanoProCas9), which combines the targeted delivery and the conditional activation of CRISPR-Cas9 for the precision therapy of inflammatory bowel disease. NanoProCas9 is composed of (i) cationic poly(ß-amino ester) (PBAE) capable of complexing plasmid DNA encoding destabilized Cas9 (dsCas9) nuclease, (ii) a layer of biomimetic cell membrane coated on PBAE/plasmid nanocomplexes for the targeted delivery of PBAE/dsCas9 complexes, and (iii) the stimuli-responsive precursory molecules anchored on the exofacial membrane. The systemic administration of NanoProCas9 enables the targeted delivery of dsCas9 plasmid into inflammatory lesions, where the precursory small molecule can be activated by ROS signals to stabilize expressed dsCas9, thereby activating Cas9 function for inflammatory genome editing. The proposed "genome-editing prodrug" presents a proof-of-concept example to precisely regulate CRISPR-Cas9 functions by virtue of particular pathological stimuli in vivo.

14.
ACS Cent Sci ; 7(6): 990-1000, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34235260

RESUMO

We synthesized a series of poly(disulfide)s by ring-opening polymerization and demonstrated that the copolymerization of monomer 1 containing diethylenetriamine moieties and monomer 2 containing guanidyl ligands could generate an efficient delivery platform for different forms of CRISPR-Cas9-based genome editors, including plasmid, mRNA, and protein. The excellent delivery performance of designed poly(disulfide)s stems from their delicate molecular structures to interact with genome-editing biomacromolecules, unique delivery pathways to mediate the cellular uptake of CRISPR-Cas9 cargoes, and strong ability to escape the endosome. The degradation of poly(disulfide)s by intracellular glutathione not only promotes the timely release of CRISPR-Cas9 machineries into the cytosol but also minimizes the cytotoxicity that nondegradable polymeric carriers often encounter. These merits collectively account for the excellent ability of poly(disulfide)s to mediate different forms of CRISPR-Cas9 for their efficient genome-editing activities in vitro and in vivo.

15.
J Mater Chem B ; 9(35): 7172-7181, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34369535

RESUMO

A comprehensive understanding of ferroptosis signaling pathways significantly contributes to the advances in cancer ferrotherapy. Herein, we constructed a self-assembled prodrug nanosystem targeting system xc-, a key regulator for ferroptosis, to amplify the therapeutic efficacy of cancer ferrotherapy. The prodrug nanosystem is assembled between sulfasalazine (SSZ, a ferroptosis resistance inhibitor) and disulfide-bridged levodopa (DSSD) that can chelate Fe2+ ions to form SSZ-Fe2+@DSSD, and the resulting nanoassembly can not only inhibit ferroptosis resistance, but also generate ROS in the tumor microenvironment. Whereas the prodrug nanosystem is stable in the physiological environment, it becomes unstable in the tumoral and intracellular reductive microenvironment, where the disulfide linkers are disrupted by high levels of glutathione (GSH), triggering the release of active Fe2+ and SSZ. Under the Fenton reaction, the released Fe2+ thus can induce ferroptosis, which is amplified by SSZ-mediated inhibition of ferroptosis resistance to synergistically improve the therapeutic efficacy of ferroptosis. Our study thus provides an innovative prodrug strategy to advance anticancer ferroptosis.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Ferroptose/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Levodopa/farmacologia , Pró-Fármacos/farmacologia , Sulfassalazina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Compostos Ferrosos/química , Humanos , Levodopa/química , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Oxirredução , Tamanho da Partícula , Pró-Fármacos/síntese química , Pró-Fármacos/química , Espécies Reativas de Oxigênio/metabolismo , Sulfassalazina/química , Microambiente Tumoral/efeitos dos fármacos
16.
Adv Mater ; 33(12): e2006003, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33538047

RESUMO

A photothermal genome-editing strategy is described to improve immune checkpoint blockade (ICB) therapy by CRISPR/Cas9-mediated disruption of PD-L1 and mild-hyperthermia-induced activation of immunogenic cell death (ICD). This strategy relies on a supramolecular cationic gold nanorod that not only serves as a carrier to deliver CRISPR/Cas9 targeting PD-L1, but also harvests the second near-infrared-window (NIR-II) light and converts into mild hyperthermia to induce both ICD and gene expression of Cas9. The genomic disruption of PD-L1 significantly augments ICB therapy by improving the conversion of dendritic cells to T cells, followed by promoting the infiltration of cytotoxic T lymphocytes into tumors, thereby reprogramming immunosuppressive tumor microenvironment into immunoactive one. Such a therapeutic modality greatly inhibits the activity of primary and metastatic tumors and exhibits long-term immune memory effects against both rechallenged and recurrent tumors. The current therapeutic strategy for synergistic PD-L1 disruption and ICD activation represents an appealing way for cancer immunotherapy.


Assuntos
Antígeno B7-H1/genética , Edição de Genes/métodos , Ouro/química , Imunoterapia/métodos , Nanomedicina/métodos , Nanotubos/química , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Raios Infravermelhos
18.
PLoS One ; 12(1): e0169404, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28068357

RESUMO

Silk glands (SGs) undergo massive apoptosis driven degeneration during the larval-pupal transformation. To better understand this event on molecular level, we investigated the expression of apoptosis-related genes across the developmental transition period that spans day 4 in the fifth instar Bombyx mori larvae to day 2 pupae. Increases in the expression of BmDredd (an initiator caspase homolog) closely followed the highest BmEcR expression and resembled the expression trend of BmIcE. Simultaneously, we found that BmDredd expression was significantly higher in SG compared to other tissues at 18 h post-spinning, but reduced following injection of the apoptosis inhibitor (Z-DEVD-fmk). Furthermore, BmDredd expression correlated with changes of caspase3-like activities in SG and RNAi-mediated knockdown of BmDredd delayed SG apoptosis. Moreover, caspase3-like activity was increased in SG by overexpression of BmDredd. Taken together, the results suggest that BmDredd plays a critical role in SG apoptosis.


Assuntos
Apoptose/genética , Bombyx/fisiologia , Caspases/genética , Proteínas de Insetos/genética , Seda/metabolismo , Animais , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Expressão Gênica/efeitos dos fármacos , Proteínas de Insetos/metabolismo , Metamorfose Biológica
19.
Insect Sci ; 23(1): 28-36, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25409652

RESUMO

PLA2 enzyme hydrolyzes arachidonic acid, and other polyunsaturated fatty acids, from the sn-2 position to release free arachidonic acid and a lysophospholipid. Previous studies reported that the PLA2 in invertebrate organisms participates in lipid signaling molecules like arachidonic acid release in immune-associated tissues like hemocytes and fat bodies. In the present study, we cloned the BmPLA2 gene from fat body tissue of silkworm Bombyx mori, which has a total sequence of 1.031 kb with a 31.90 kDa protein. In silico results of BmPLA2 indicated that the protein has a putative WD40 conserved domain and its phylogeny tree clustered with Danaus plexippus species. We investigated the transcriptional expression in development stages and tissues. The highest expression of BmPLA2 was screened in fat body among the studied tissues of third day fifth instar larva, with a high expression on third day fifth instar larva followed by a depression of expression in the wandering stage of the fifth instar larva. The expression of BmPLA2 in female pupa was higher than that of male pupa. Our RNAi-mediated gene silencing results showed highest reduction of BmPLA2 expression in post-24 h followed by post-48 and post-72 h. The BmPLA2-RNAi larvae and pupa could be characterized by pharate adult lethality and underdevelopment. The phenotypic characters of fat body cells in RNAi-induced larva implied that BmPLA2 affects the metabolic functions of fat body tissue in silkworm Bombyx mori.


Assuntos
Bombyx/metabolismo , Sequência Conservada , Corpo Adiposo/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Clonagem Molecular , Metabolismo Energético , Corpo Adiposo/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Dados de Sequência Molecular , Fenótipo , Estrutura Terciária de Proteína , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Transcrição Gênica
20.
Insect Sci ; 22(5): 587-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25154865

RESUMO

Hedgehog (Hh) signals regulate invertebrate and vertebrate development, yet the role of the pathway in adipose development remains poorly understood. In this report, we found that Hh pathway components are expressed in the fat body of silkworm larvae. Functional analysis of these components in a BmN cell line model revealed that activation of the Hh gene stimulated transcription of Hh pathway components, but inhibited the expression of the adipose marker gene AP2. Conversely, specific RNA interference-mediated knockdown of Hh resulted in increased AP2 expression. This further showed the regulation of Hh signal on the adipose marker gene. In silkworm larval models, enhanced adipocyte differentiation and an increase in adipocyte cell size were observed in silkworms that had been treated with a specific Hh signaling pathway antagonist, cyclopamine. The fat-body-specific Hh blockade tests were consistent with Hh signaling inhibiting silkworm adipogenesis. Our results indicate that the role of Hh signaling in inhibiting fat formation is conserved in vertebrates and invertebrates.


Assuntos
Bombyx/metabolismo , Proteínas Hedgehog/metabolismo , Adipócitos/fisiologia , Adipogenia/genética , Animais , Bombyx/genética , Linhagem Celular , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/antagonistas & inibidores , Larva/metabolismo , Interferência de RNA , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Alcaloides de Veratrum/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA