Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(24): e2302854120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276396

RESUMO

Stomata are pores found in the epidermis of stems or leaves that modulate both plant gas exchange and water/nutrient uptake. The development and function of plant stomata are regulated by a diverse range of environmental cues. However, how carbohydrate status in preexisting leaves might determine systemic stomatal formation within newly developing leaves has remained obscure. The glucose (Glc) sensor HEXOKINASE1 (HXK1) has been reported to decrease the stability of an ethylene/Glc signaling transcriptional regulator, EIN3 (ETHYLENE INSENSITIVE3). EIN3 in turn directly represses the expression of SUC2 (sucrose transporter 2), encoding a master transporter of sucrose (Suc). Further, KIN10, a nuclear regulator involved in energy homeostasis, has been reported to repress the transcription factor SPCH (SPEECHLESS), a master regulator of stomatal development. Here, we demonstrate that the Glc status of preexisting leaves determines systemic stomatal development within newly developing leaves by the HXK1-¦EIN3-¦SUC2 module. Further, increasing Glc levels in preexisting leaves results in a HXK1-dependent decrease of EIN3 and increase of SUC2, triggering the perception, amplification and relay of HXK1-dependent Glc signaling and thereby triggering Suc transport from mature to newly developing leaves. The HXK1-¦EIN3-¦SUC2 molecular module thereby drives systemic Suc transport from preexisting leaves to newly developing leaves. Subsequently, increasing Suc levels within newly developing leaves promotes stomatal formation through the established KIN10⟶ SPCH module. Our findings thus show how a carbohydrate signal in preexisting leaves is sensed, amplified and relayed to determine the extent of systemic stomatal development within newly developing leaves.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Açúcares/metabolismo , Folhas de Planta/metabolismo , Etilenos/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
2.
Genome Res ; 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948368

RESUMO

Understanding the genetic mechanisms of phenotypic variation in hybrids between domestic animals and their wild relatives may aid germplasm innovation. Here, we report the high-quality genome assemblies of a male Pamir argali (O ammon polii, 2n = 56), a female Tibetan sheep (O aries, 2n = 54), and a male hybrid of Pamir argali and domestic sheep, and the high-throughput sequencing of 425 ovine animals, including the hybrids of argali and domestic sheep. We detected genomic synteny between Chromosome 2 of sheep and two acrocentric chromosomes of argali. We revealed consistent satellite repeats around the chromosome breakpoints, which could have resulted in chromosome fusion. We observed many more hybrids with karyotype 2n = 54 than with 2n = 55, which could be explained by the selfish centromeres, the possible decreased rate of normal/balanced sperm, and the increased incidence of early pregnancy loss in the aneuploid ewes or rams. We identified genes and variants associated with important morphological and production traits (e.g., body weight, cannon circumference, hip height, and tail length) that show significant variations. We revealed a strong selective signature at the mutation (c.334C > A, p.G112W) in TBXT and confirmed its association with tail length among sheep populations of wide geographic and genetic origins. We produced an intercross population of 110 F2 offspring with varied number of vertebrae and validated the causal mutation by whole-genome association analysis. We verified its function using CRISPR-Cas9 genome editing. Our results provide insights into chromosomal speciation and phenotypic evolution and a foundation of genetic variants for the breeding of sheep and other animals.

3.
Plant Physiol ; 195(3): 2309-2322, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466216

RESUMO

Soil (or plant) water deficit accelerates plant reproduction. However, the underpinning molecular mechanisms remain unknown. By modulating cell division/number, ABSCISIC ACID-INSENSITIVE 5 (ABI5), a key bZIP (basic (region) leucine zippers) transcription factor, regulates both seed development and abiotic stress responses. The KIP-RELATED PROTEIN (KRP) cyclin-dependent kinases (CDKs) play an essential role in controlling cell division, and SHOOT MERISTEMLESS (STM) plays a key role in the specification of flower meristem identity. Here, our findings show that abscisic acid (ABA) signaling and/or metabolism in adjust reproductive outputs (such as rosette leaf number and open flower number) under water-deficient conditions in Arabidopsis (Arabidopsis thaliana) plants. Reproductive outputs increased under water-sufficient conditions but decreased under water-deficient conditions in the ABA signaling/metabolism mutants abscisic acid2-1 (aba2-1), aba2-11, abscisic acid insensitive3-1 (abi3-1), abi4-1, abi5-7, and abi5-8. Further, under water-deficient conditions, ABA induced-ABI5 directly bound to the promoter of KRP1, which encodes a CDK that plays an essential role in controlling cell division, and this binding subsequently activated KRP1 expression. In turn, KRP1 physically interacted with STM, which functions in the specification of flower meristem identity, promoting STM degradation. We further demonstrate that reproductive outputs are adjusted by the ABI5-KRP1-STM molecular module under water-deficient conditions. Together, our findings reveal the molecular mechanism by which ABA signaling and/or metabolism regulate reproductive development under water-deficient conditions. These findings provide insights that may help guide crop yield improvement under water deficiency.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Abscísico/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Transdução de Sinais , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Reprodução , Mutação/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Proteínas de Homeodomínio
4.
PLoS Genet ; 18(9): e1010424, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36129930

RESUMO

In most plants, sucrose, a major storage sugar, is transported into sink organs to support their growth. This key physiological process is dependent on the function of sucrose transporters. Sucrose export from source tissues is predominantly controlled through the activity of SUCROSE TRANSPORTER 2 (SUC2), required for the loading of sucrose into the phloem of Arabidopsis plants. However, how SUC2 activity is controlled to support root growth remains unclear. Glucose is perceived via the function of HEXOKINASE 1 (HXK1), the only known nuclear glucose sensor. HXK1 negatively regulates the stability of ETHYLENE-INSENSITIVE3 (EIN3), a key ethylene/glucose interaction component. Here we show that HXK1 functions upstream of EIN3 in the regulation of root sink growth mediated by glucose signaling. Furthermore, the transcription factor EIN3 directly inhibits SUC2 activity by binding to the SUC2 promoter, regulating glucose signaling linked to root sink growth. We demonstrate that these molecular components form a HXK1-EIN3-SUC2 module integral to the control of root sink growth. Also, we demonstrate that with increasing age, the HXK1-EIN3-SUC2 module promotes sucrose phloem loading in source tissues thereby elevating sucrose levels in sink roots. As a result, glucose signaling mediated-sink root growth is facilitated. Our findings thus establish a direct molecular link between the HXK1-EIN3-SUC2 module, the source-to sink transport of sucrose and root growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Folhas de Planta , Plantas/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/genética
5.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37134013

RESUMO

HIV-1 is a highly host-specific retrovirus that infects humans but not most nonhuman primates. Thus, the lack of a suitable primate model that can be directly infected with HIV-1 hinders HIV-1/AIDS research. In the previous study, we have found that the northern pig-tailed macaques (NPMs) are susceptible to HIV-1 infection but show a nonpathogenic state. In this study, to understand this macaque-HIV-1 interaction, we assembled a de novo genome and longitudinal transcriptome for this species during the course of HIV-1 infection. Using comparative genomic analysis, a positively selected gene, Toll-like receptor 8, was identified with a weak ability to induce an inflammatory response in this macaque. In addition, an interferon-stimulated gene, interferon alpha inducible protein 27, was upregulated in acute HIV-1 infection and acquired an enhanced ability to inhibit HIV-1 replication compared with its human ortholog. These findings coincide with the observation of persistently downregulated immune activation and low viral replication and can partially explain the AIDS-free state in this macaque following HIV-1 infection. This study identified a number of unexplored host genes that may hamper HIV-1 replication and pathogenicity in NPMs and provided new insights into the host defense mechanisms in cross-species infection of HIV-1. This work will facilitate the adoption of NPM as a feasible animal model for HIV-1/AIDS research.


Assuntos
Infecções por HIV , HIV-1 , Vírus da Imunodeficiência Símia , Animais , Humanos , Macaca nemestrina , HIV-1/genética , Genômica , Vírus da Imunodeficiência Símia/genética
6.
Biochem Biophys Res Commun ; 702: 149654, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340657

RESUMO

Accumulating evidence underscores the pivotal role of envelope proteins in viral secondary envelopment. However, the intricate molecular mechanisms governing this phenomenon remain elusive. To shed light on these mechanisms, we investigated a Golgi-retained gD of EHV-1 (gDEHV-1), distinguishing it from its counterparts in Herpes Simplex Virus-1 (HSV-1) and Pseudorabies Virus (PRV). To unravel the specific sequences responsible for the Golgi retention phenotype, we employed a gene truncation and replacement strategy. The results suggested that Golgi retention signals in gDEHV-1 exhibiting a multi-domain character. The extracellular domain of gDEHV-1 was identified as an endoplasmic reticulum (ER)-resident domain, the transmembrane domain and cytoplasmic tail (TM-CT) of gDEHV-1 were integral in facilitating the protein's residence within the Golgi complex. Deletion or replacement of either of these dual domains consistently resulted in the mutant gDEHV-1 being retained in an ER-like structure. Moreover, (TM-CT)EHV-1 demonstrated a preference for binding to endomembranes, inducing the generation of a substantial number of vesicles, potentially originate from the Golgi complex or the ER-Golgi intermediate compartment. In conclusion, our findings provide insights into the intricate molecular mechanisms governing the Golgi retention of gDEHV-1, facilitating the comprehension of the processes underlying viral secondary envelopment.


Assuntos
Herpesvirus Equídeo 1 , Proteínas do Envelope Viral , Animais , Cavalos , Proteínas do Envelope Viral/química , Herpesvirus Equídeo 1/metabolismo , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Domínios Proteicos
7.
Breast Cancer Res Treat ; 205(3): 425-438, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492162

RESUMO

PURPOSE: Depression is one of the main psychological responses experienced by patients with breast cancer perioperatively. Therefore, this review aimed to synthesize the prevalence rate of depression preoperatively among patients with breast cancer. METHODS: Six databases were searched for published articles, which recruited female patients aged 18 years and above, diagnosed with breast cancer and planned for breast surgery. Grey literatures were searched from ProQuest Theses and Dissertations, Science.gov and CogPrints. Studies published in English from the inception of databases to January 2023 were considered. Two reviewers screened, extracted, and appraised the data independently. Joanna Briggs Institute data collection form was used for data collection. Hoy's Risk of Bias Tool was utilized to assess the individual study's quality. Review Manager 5.4 software was utilized for meta-analysis. Subgroup analyses were conducted to explore the reasons for any heterogeneity. Publication bias was evaluated by Egger's test and funnel plot. RESULTS: Twenty studies involving 32,143 patients with breast cancer were included. Meta-analyses revealed an overall preoperative prevalence of 30% among all studies. Subgroup analyses showed that studies conducted in the Middle East and North Africa used purposive sampling, with patients undergoing mastectomy and lumpectomy and with moderate risk of bias reported higher prevalence of preoperative depression (54%, 44%, 40%, and 49%, respectively) as compared to other respective subgroups. CONCLUSION: The high prevalence of preoperative depression among women with breast cancer indicated the need for health care professionals to provide more psychological support to them.


Assuntos
Neoplasias da Mama , Depressão , Mastectomia , Humanos , Feminino , Neoplasias da Mama/cirurgia , Neoplasias da Mama/psicologia , Neoplasias da Mama/epidemiologia , Prevalência , Depressão/epidemiologia , Depressão/etiologia , Depressão/psicologia , Mastectomia/psicologia , Fatores de Risco , Período Pré-Operatório
8.
Plant Physiol ; 194(1): 391-407, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738410

RESUMO

Exposure of dark-grown etiolated seedlings to light triggers the transition from skotomorphogenesis/etiolation to photomorphogenesis/de-etiolation. In the life cycle of plants, de-etiolation is essential for seedling development and plant survival. The mobilization of soluble sugars (glucose [Glc], sucrose, and fructose) derived from stored carbohydrates and lipids to target organs, including cotyledons, hypocotyls, and radicles, underpins de-etiolation. Therefore, dynamic carbohydrate biochemistry is a key feature of this phase transition. However, the molecular mechanisms coordinating carbohydrate status with the cellular machinery orchestrating de-etiolation remain largely opaque. Here, we show that the Glc sensor HEXOKINASE 1 (HXK1) interacts with GROWTH REGULATOR FACTOR5 (GRF5), a transcriptional activator and key plant growth regulator, in Arabidopsis (Arabidopsis thaliana). Subsequently, GRF5 directly binds to the promoter of phytochrome A (phyA), encoding a far-red light (FR) sensor/cotyledon greening inhibitor. We demonstrate that the status of Glc within dark-grown etiolated cotyledons determines the de-etiolation of seedlings when exposed to light irradiation by the HXK1-GRF5-phyA molecular module. Thus, following seed germination, accumulating Glc within dark-grown etiolated cotyledons stimulates a HXK1-dependent increase of GRF5 and an associated decrease of phyA, triggering the perception, amplification, and relay of HXK1-dependent Glc signaling, thereby facilitating the de-etiolation of seedlings following light irradiation. Our findings, therefore, establish how cotyledon carbohydrate signaling under subterranean darkness is sensed, amplified, and relayed, determining the phase transition from skotomorphogenesis to photomorphogenesis on exposure to light irradiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plântula/metabolismo , Cotilédone/metabolismo , Estiolamento , Glucose/metabolismo , Luz , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo A/metabolismo , Regulação da Expressão Gênica de Plantas
9.
J Nanobiotechnology ; 22(1): 330, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862987

RESUMO

The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.


Assuntos
Criopreservação , Ovário , Criopreservação/métodos , Feminino , Humanos , Animais
10.
J Pediatr Nurs ; 75: e81-e92, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38195374

RESUMO

OBJECTIVES: To examine the effectiveness of near-infrared light devices (NIR) on procedure time of successful cannulation, success rate at the first attempt, and pain scores among pediatric patients and explore potential covariates on the intervention effect. BACKGROUND: Pediatric patients have encountered a high failure rate as compared with adult patients using traditional cannulation. NIR devices might help to access veins with an optimum viewing area and eliminate the number of attempts. However, methodological limitations and inconsistent results from previous reviews were found. METHODS: A three-step comprehensive search was performed in nine databases. Meta-analysis, subgroup, and meta-regression analyses were conducted. Individual quality assessment and certainty of evidence were assessed using the Cochrane risk of bias tool and the Grading of Recommendations, Assessments, Development, and Evaluation criteria, respectively. RESULTS: We included 18 randomized controlled trials (RCTs) with 5298 children and adolescents across nine countries. NIR light devices significantly reduce -29.43 s of procedure time and -0.47 attempts of peripheral intravenous cannulation compared with traditional methods. Subgroup analysis observed a significantly large effect size on procedure time using AccuVein with pre-procedure training at the clinics. However, NIR light devices do not significantly decrease the procedure time, first attempt success rate, and pain scores. Meta-regression identified sample size as a significant covariate that had an impact on the success rate at the first attempt. CONCLUSIONS: The near-infrared light device can statistically significantly reduce the procedure time and the number of attempts. Given the low or very low certainty of the evidence, future well-designed RCTs are necessary.


Assuntos
Cateterismo Periférico , Adolescente , Criança , Humanos , Cateterismo Periférico/métodos , Dor/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Exp Eye Res ; 226: 109335, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436569

RESUMO

Choroidal neovascularization (CNV) is a hallmark of wet age-related macular degeneration, which severely impairs central vision. Studies have shown that endothelial-mesenchymal transition (EndMT) is involved in the pathogenesis of CNV. Licochalcone A (lico A), a flavonoid extracted from the root of licorice, shows the inhibition on EndMT, but it remains unclear whether it can suppress the formation of CNV. The aim of this study is to investigate the effects of lico A on laser-induced CNV, and EndMT process in vitro and vivo. We established the model of CNV with a krypton laser in Brown-Norway rats and then intraperitoneally injected lico A. Our experimental results demonstrated that the leakage of CNV was relieved, and the area of CNV was reduced in lico A-treated rats. Cell migration and tube formation in oxidized low-density lipoprotein (Ox-LDL)-stimulated HUVECs were inhibited by lico A and promoted by PI3K activator 740Y-P. The protein expressions of snai1 and α-SMA were increased, and CD31 and VE-cadherin were decreased in the model rats of CNV, but partially reversed after treatment with lico A. The expression of CD31 was decreased and α-SMA was increased in OX-LDL-treated HUVECs, which was further strengthened by 740Y-P, while the expression of CD31 was up-regulated and α-SMA was down-regulated in lico A treated HUVECs. Our data revealed that EndMT process was alleviated by lico A. Meanwhile, PI3K/AKT signaling pathway was activated in model rat of CNV and Ox-LDL-stimulated HUVECs, which can be suppressed with treatment of lico A. Our experimental results confirmed for the first time that lico A has the potential to alleviate CNV by inhibiting the endothelial-mesenchymal transition via PI3K/AKT signaling pathway.


Assuntos
Neovascularização de Coroide , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/prevenção & controle , Neovascularização de Coroide/etiologia , Lasers , Ratos Endogâmicos BN
12.
Mol Psychiatry ; 27(10): 4077-4091, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35804093

RESUMO

Fear extinction allows for adaptive control of learned fear responses but often fails, resulting in a renewal or spontaneous recovery of the extinguished fear, i.e., forgetting of the extinction memory readily occurs. Using an activity-dependent neuronal labeling strategy, we demonstrate that engram neurons for fear extinction memory are dynamically positioned in the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), and ventral hippocampus (vHPC), which constitute an engram construct in the term of directional engram synaptic connectivity from the BLA or vHPC to mPFC, but not that in the opposite direction, for retrieval of extinction memory. Fear renewal or spontaneous recovery switches the extinction engram construct from an accessible to inaccessible state, whereas additional extinction learning or optogenetic induction of long-term potentiation restores the directional engram connectivity and prevents the return of fear. Thus, the plasticity of engram construct underlies forgetting of extinction memory.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Extinção Psicológica , Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Condicionamento Psicológico/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia
13.
Mol Ther ; 30(7): 2554-2567, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358687

RESUMO

Matrix stiffness promotes hepatocellular carcinoma (HCC) metastasis. This study examined the contribution of lipid metabolic reprogramming to matrix stiffness-induced HCC metastasis. HCC cells were cultured on mechanically tunable polyacrylamide gels and subjected to lipidomic analysis. The key enzyme that responded to matrix stiffness and regulated lipid metabolism was identified. The comparative lipidomic screening revealed that stearoyl-CoA desaturase 1 (SCD1) is a mechanoresponsive enzyme that reprogrammed HCC cell lipid metabolism. The genetic and pharmacological inhibition of SCD1 expression/activity altered the cellular lipid composition, which in turn impaired plasma membrane fluidity and inhibited in vitro invasive motility of HCC cells in response to high matrix stiffness. Knockdown of SCD1 suppressed HCC invasion and metastasis in vivo. Conversely, the overexpression of SCD1 or exogenous administration of its product oleic acid augmented plasma membrane fluidity and rescued in vitro invasive migration in HCC cells cultured on soft substrates, mimicking the effects imposed by high matrix stiffness. In human HCC tissues, collagen content, a marker of increasing matrix stiffness, and increased expression of SCD1 together predicted poor survival of HCC patients. An SCD1-dependent mechanoresponsive pathway that responds to increasing matrix stiffness in the tumor microenvironment promotes HCC invasion and metastasis through lipid metabolic reprogramming.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Humanos , Lipídeos , Neoplasias Hepáticas/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Microambiente Tumoral
14.
Int J Med Sci ; 20(11): 1448-1459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790849

RESUMO

TJP1, an adaptor protein of the adhesive barrier, has been found to exhibit distinct oncogenic or tumor suppressor functions in a cell-type dependent manner. However, the role of TJP1 in kidney renal clear cell carcinoma (KIRC) remains to be explored. The results showed a marked down-regulation of TJP1 in KIRC tissues compared to normal tissues. Low expression of TJP1 was significantly associated with high grade and poor prognosis in KIRC. Autophagosome aggregation and LC3 II conversion demonstrated that TJP1 may induce autophagy signaling in 786-O and OS-RC-2 cells. Knockdown of TJP1 led to a decrease in the expression of autophagy-related genes, such as BECN1, ATG3, and ATG7. Consistently, TJP1 expression showed a significant positive correlation with these autophagy-related genes in KIRC patients. Furthermore, the overall survival analysis of KIRC patients based on the expression of autophagy-related genes revealed that most of these genes were associated with a good prognosis. TJP1 overexpression significantly suppressed cell proliferation and tumor growth in 786-O cells, whereas the addition of an autophagy inhibitor diminished its inhibitory function. Taken together, these results suggest that TJP1 serves as a favorable prognostic marker and induces autophagy to suppress cell proliferation and tumor growth in KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Proteína da Zônula de Oclusão-1 , Autofagia/genética , Carcinoma de Células Renais/genética , Proliferação de Células/genética , Neoplasias Renais/genética , Rim , Prognóstico
15.
Arch Phys Med Rehabil ; 104(10): 1698-1710, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36972746

RESUMO

OBJECTIVE: This review aims to evaluate the effectiveness of solely overground robotic exoskeleton (RE) training or overground RE training with conventional rehabilitation in improving walking ability, speed, and endurance among patients with stroke. DATA SOURCES: Nine databases, 5 trial registries, gray literature, specified journals, and reference lists from inception until December 27, 2021. STUDY SELECTION: Randomized controlled trials adopting overground robotic exoskeleton training for patients with any phases of stroke on walking-related outcomes were included. DATA EXTRACTION: Two independent reviewers extracted items and performed risk of bias using the Cochrane Risk of Bias tool 1 and certainty of evidence using the Grades of Recommendation Assessment, Development, and Evaluation. DATA SYNTHESIS: Twenty trials involving 758 participants across 11 countries were included in this review. The overall effect of overground robotic exoskeletons on walking ability at postintervention (d=0.21; 95% confidence interval [CI], 0.01, 0.42; Z=2.02; P=.04) and follow-up (d=0.37; 95% CI, 0.03, 0.71; Z=2.12; P=.03) and walking speed at postintervention (d=0.23; 95% CI, 0.01, 0.46; Z=2.01; P=.04) showed significant improvement compared with conventional rehabilitation. Subgroup analyses suggested that RE training should combine with conventional rehabilitation. A preferable gait training regime is <4 times per week over ≥6 weeks for ≤30 minutes per session among patients with chronic stroke and ambulatory status of independent walkers before training. Meta-regression did not identify any effect of the covariates on the treatment effect. The majority of randomized controlled trials had small sample sizes, and the certainty of the evidence was very low. CONCLUSION: Overground RE training may have a beneficial effect on walking ability and walking speed to complement conventional rehabilitation. Further large-scale and long-term, high-quality trials are recommended to enhance the quality of overground RE training and confirm its sustainability.


Assuntos
Exoesqueleto Energizado , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Caminhada , Marcha
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(1): 7-13, 2023 Jan.
Artigo em Zh | MEDLINE | ID: mdl-36647636

RESUMO

Keeping the immune system healthy forms an effective way to fight infections. Past experience has shown that, in addition to effective interventions including vaccination, drug therapy, and non-pharmaceutical intervention (NPI), dietary nutrition and mental health are also key factors in maintaining immune system health and combating emerging and sudden outbreaks of infections. As the main dietary nutrients, vitamins are active regulators of the immune response and exert a critical impact on the immunity of the human body. Vitamin deficiency causes increased levels of inflammation and decreased immunity, which usually starts in the oral tissues. Appropriate vitamin supplementation can help the body optimize immune function, enhance oral immunity, and reduce the negative impact of pathogen infection on the human body, which makes it a feasible, effective, and universally applicable anti-infection solution. This review focuses on the immunomodulatory effects of vitamin A, B, C, D, and E and proposes that an omics-based new systemic approach will lead to a breakthrough of the limitations in traditional single-factor single-pathway research and provide the direction for the basic and applied research of vitamin immune regulation and anti-infection in all aspects.


Assuntos
Vitamina A , Vitaminas , Humanos , Vitaminas/uso terapêutico , Vitaminas/farmacologia , Vitamina A/farmacologia , Sistema Imunitário/fisiologia , Vitamina K/farmacologia , Inflamação/tratamento farmacológico , Suplementos Nutricionais
17.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5701-5706, 2023 Nov.
Artigo em Zh | MEDLINE | ID: mdl-38114166

RESUMO

The application of new-generation information technologies such as big data, the internet of things(IoT), and cloud computing in the traditional Chinese medicine(TCM)manufacturing industry is gradually deepening, driving the intelligent transformation and upgrading of the TCM industry. At the current stage, there are challenges in understanding the extraction process and its mechanisms in TCM. Online detection technology faces difficulties in making breakthroughs, and data throughout the entire production process is scattered, lacking valuable mining and utilization, which significantly hinders the intelligent upgrading of the TCM industry. Applying data-driven technologies in the process of TCM extraction can enhance the understanding of the extraction process, achieve precise control, and effectively improve the quality of TCM products. This article analyzed the technological bottlenecks in the production process of TCM extraction, summarized commonly used data-driven algorithms in the research and production control of extraction processes, and reviewed the progress in the application of data-driven technologies in the following five aspects: mechanism analysis of the extraction process, process development and optimization, online detection, process control, and production management. This article is expected to provide references for optimizing the extraction process and intelligent production of TCM.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Controle de Qualidade , Big Data , Algoritmos
18.
J Cell Mol Med ; 26(8): 2218-2229, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170199

RESUMO

Accumulating evidence suggests that circular RNAs (circRNAs) play essential roles in regulating cancer progression, but many circRNAs in hepatocellular carcinoma (HCC) remain unknown. Dysregulated circRNAs in HCC were identified through bioinformatics analysis of Gene Expression Omnibus data sets. Quantitative real-time PCR (qRT-PCR), Sanger sequencing, RNase R digestion and actinomycin D treatment were conducted to confirm the characterization of circRNAs. CCK-8, wound-healing and Transwell assays were performed to assess the functional roles of Hsa_circ_0003945 (Circ_0003945) in HCC cell lines. Subcellular fractionation and fluorescence in situ hybridization (FISH) were performed to locate Circ_0003945 in HCC cells. Dual-luciferase reporter assay was executed to verify the binding of Circ_0003945 to microRNAs (miRNAs) or the miRNAs to their target genes. In this study, we found that Circ_0003945 was upregulated in HCC tissue, and higher Circ_0003945 expression was positively correlated with tumour size and tumour stage. Furthermore, high plasma levels of circulating Circ_0003945 were confirmed in HCC patients compared with those in non-HCC groups. The functional experiments revealed that overexpression or knockdown of Circ_0003945 promoted or attenuated tumour growth and migration, respectively. Mechanistically, Circ_0003945 might exert as a miR-34c-5p sponge to upregulate the expression of leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4), activating the ß-catenin pathway, and finally facilitating HCC progression. Additionally, a ß-catenin activator could reverse the effect of Circ_0003945 knockdown. In conclusion, Circ_0003945 exerts a tumour-promoting role in HCC cells by regulating the miR-34c-5p/LGR4/ß-catenin axis, which may be a potential target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Receptores Acoplados a Proteínas G , beta Catenina , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , beta Catenina/genética , beta Catenina/metabolismo
19.
Lupus ; 31(14): 1759-1769, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36218127

RESUMO

OBJECTIVES: The Montreal Cognitive Assessment (MoCA) is an increasingly used screening tool for cognitive impairment. The aim of this study was to examine how MoCA performed in identifying cognitive impairment (CI) domains in SLE patients compared with formal standardized neuropsychological testing (NPT). Factors related to SLE disease, immunologic and psychological state associated with CI were also explored. METHODS: This cross-sectional study recruited 50 SLE patients without overt neuropsychiatric manifestations from April 2017 to May 2018. The patients were evaluated with MoCA, formal NPT and the Depression, Anxiety, and Stress Scales (DASS) 42-item self-report questionnaire. Values of sensitivity and specificity were computed for different cut-offs of MoCA within each cognitive domain of NPT and descriptive analysis was used to identify the factors affecting cognitive function. RESULTS: The median score for MoCA was 27.5 (range 22-30). Using a MoCA cutoff of <26, 18 (36%) were identified to have CI using NPT compared to 8 (16%) using MoCA. The most frequently affected cognitive domain was executive functioning with 15 affected patients. Sensitivities and specificities of the MoCA range from 50% to 100% and 5.7% to 16.7%, respectively, across cognitive domains. A lower MoCA cutoff of <25 improve sensitivity of identifying impairment in executive functioning from 60% to 80%. In univariate analysis, DASS scores, disease activity, presence of antiphospholipid antibodies, presence of concurrent autoimmune disease, current, and cumulative corticosteroid therapy did not predict cognitive performance. CONCLUSION: MoCA may be a useful screening tool to identify the most frequently affected cognitive domain which is executive functioning using a lower cutoff of <25 in SLE patients without overt neuropsychiatric manifestations.


Assuntos
Disfunção Cognitiva , Lúpus Eritematoso Sistêmico , Humanos , Estudos Transversais , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/psicologia , Testes de Estado Mental e Demência , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Função Executiva , Testes Neuropsicológicos
20.
Am J Hematol ; 97(7): 915-923, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35477923

RESUMO

Sustained hypercoagulability and endotheliopathy are present in convalescent COVID-19 patients for up to 4 months from recovery. The hemostatic, endothelial, and inflammatory profiles of 39 recovered COVID-19 patients were evaluated up to 16 months after recovery from COVID-19. These values were compared with a control group of healthy volunteers (n = 124). 39 patients (71.8% males, median age 43 years) were reviewed at a mean of 12.7 ± 3.6 months following recovery. One patient without cardiovascular risk factors had post COVID-19 acute ischaemic limb. Elevated D-dimer and Factor VIII levels above normal ranges were noted in 17.9% (7/39) and 48.7% (19/39) of patients respectively, with a higher median D-dimer 0.34 FEU µg/mL (IQR 0.28, 0.46) (p < .001) and Factor VIII 150% (IQR 171, 203) (p = .004), versus controls. Thrombin generation (Thromboscreen) showed a higher median endogenous thrombin potential (ETP) of 1352 nM*min (IQR 1152, 1490) (p = .002) and a higher median peak height of 221.4 nM (IQR 170.2, 280.4) (p = 0.01) and delayed lag time 2.4 min (1.42-2.97) (p = 0.0002) versus controls. Raised vWF:Ag and ICAM-1 levels were observed in 17.9% (7/39) and 7.7% (3/39) of patients respectively, with a higher median VWF:Ag 117% (IQR 86, 154) (p = 0.02) and ICAM-1 54.1 ng/mL (IQR 43.8, 64.1) (p = .004) than controls. IL-6 was noted to be raised in 35.9% (14/39) of patients, with a higher median IL-6 of 1.5 pg/mL (IQR 0.6, 3.0) (p = 0.004) versus controls. Subgroup analysis stratifying patients by COVID-19 severity and COVID-19 vaccination preceding SARS-CoV-2 infection did not show statistically significant differences. Hypercoagulability, endothelial dysfunction, and inflammation are still detectable in some patients approximately 1 year after recovery from COVID-19.


Assuntos
COVID-19 , Trombofilia , Adulto , COVID-19/complicações , Vacinas contra COVID-19 , Fator VIII , Feminino , Humanos , Inflamação , Molécula 1 de Adesão Intercelular , Masculino , SARS-CoV-2 , Trombina , Trombofilia/etiologia , Fator de von Willebrand
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA