Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comput Biol Med ; 174: 108393, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582001

RESUMO

X-rays, commonly used in clinical settings, offer advantages such as low radiation and cost-efficiency. However, their limitation lies in the inability to distinctly visualize overlapping organs. In contrast, Computed Tomography (CT) scans provide a three-dimensional view, overcoming this drawback but at the expense of higher radiation doses and increased costs. Hence, from both the patient's and hospital's standpoints, there is substantial medical and practical value in attempting the reconstruction from two-dimensional X-ray images to three-dimensional CT images. In this paper, we introduce DP-GAN+B as a pioneering approach for transforming two-dimensional frontal and lateral lung X-rays into three-dimensional lung CT volumes. Our method innovatively employs depthwise separable convolutions instead of traditional convolutions and introduces vector and fusion loss for superior performance. Compared to prior models, DP-GAN+B significantly reduces the generator network parameters by 21.104 M and the discriminator network parameters by 10.82 M, resulting in a total reduction of 31.924 M (44.17%). Experimental results demonstrate that our network can effectively generate clinically relevant, high-quality CT images from X-ray data, presenting a promising solution for enhancing diagnostic imaging while mitigating cost and radiation concerns.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem , Imageamento Tridimensional/métodos , Redes Neurais de Computação , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA