Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(52): 32989-32995, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33288692

RESUMO

Tibet's ancient topography and its role in climatic and biotic evolution remain speculative due to a paucity of quantitative surface-height measurements through time and space, and sparse fossil records. However, newly discovered fossils from a present elevation of ∼4,850 m in central Tibet improve substantially our knowledge of the ancient Tibetan environment. The 70 plant fossil taxa so far recovered include the first occurrences of several modern Asian lineages and represent a Middle Eocene (∼47 Mya) humid subtropical ecosystem. The fossils not only record the diverse composition of the ancient Tibetan biota, but also allow us to constrain the Middle Eocene land surface height in central Tibet to ∼1,500 ± 900 m, and quantify the prevailing thermal and hydrological regime. This "Shangri-La"-like ecosystem experienced monsoon seasonality with a mean annual temperature of ∼19 °C, and frosts were rare. It contained few Gondwanan taxa, yet was compositionally similar to contemporaneous floras in both North America and Europe. Our discovery quantifies a key part of Tibetan Paleogene topography and climate, and highlights the importance of Tibet in regard to the origin of modern Asian plant species and the evolution of global biodiversity.

2.
Syst Biol ; 71(1): 242-258, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33964165

RESUMO

Temperate woody plants in the Northern Hemisphere have long been known to exhibit high species richness in East Asia and North America and significantly lower diversity in Europe, but the causes of this pattern remain debated. Here, we quantify the roles of dispersal, niche evolution, and extinction in shaping the geographic diversity of the temperate woody plant family Juglandaceae (walnuts and their relatives). Integrating evidence from molecular, morphological, fossil, and (paleo)environmental data, we find strong support for a Boreotropical origin of the family with contrasting evolutionary trajectories between the temperate subfamily Juglandoideae and the tropical subfamily Engelhardioideae. Juglandoideae rapidly evolved frost tolerance when the global climate shifted to ice-house conditions from the Oligocene, with diversification at high latitudes especially in Europe and Asia during the Miocene. Subsequent range contraction at high latitudes and high levels of extinction in Europe driven by global cooling led to the current regional disparity in species diversity. Engelhardioideae showed temperature conservatism while adapting to increased humidity, tracking tropical climates to low latitudes since the middle Eocene with comparatively little diversification, perhaps due to high competition in the tropical zone. The biogeographic history of Juglandaceae shows that the North Atlantic land bridge and Europe played more critical roles than previously thought in linking the floras of East Asia and North America, and showcases the complex interplay among climate change, niche evolution, dispersal, and extinction that shaped the modern disjunct pattern of species richness in temperate woody plants. [Boreotropical origin; climatic niche evolution; disjunct distribution; dispersal; diversity anomaly; extinction; Juglandaceae.].


Assuntos
Juglandaceae , Juglans , Fósseis , Filogenia , Clima Tropical
3.
New Phytol ; 225(1): 571-583, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31394010

RESUMO

Despite the role of polyploidy in multiple evolutionary processes, its impact on plant diversification remains controversial. An increased polyploid frequency may facilitate speciation through shifts in ecology, morphology or both. Here we used Allium to evaluate: (1) the relationship between intraspecific polyploid frequency and species diversification rate; and (2) whether this process is associated with habitat and/or trait shifts. Using eight plastid and nuclear ribosomal markers, we built a phylogeny of 448 Allium species, representing 46% of the total. We quantified intraspecific ploidy diversity, heterogeneity in diversification rates and their relationship along the phylogeny using trait-dependent diversification models. Finally, we evaluated the association between polyploidisation and habitat or trait shifts. We detected high ploidy diversity in Allium and a polyploidy-related diversification rate shift with a probability of 95% in East Asia. Allium lineages with high polyploid frequencies had higher species diversification rates than those of diploids or lineages with lower polyploid frequencies. Shifts in speciation rates were strongly correlated with habitat shifts linked to particular soil conditions; 81.7% of edaphic variation could be explained by polyploidisation. Our study emphasises the role of intraspecific polyploid frequency combined with ecological drivers on Allium diversification, which may explain plant radiations more generally.


Assuntos
Allium/genética , Biodiversidade , Poliploidia , Modelos Genéticos , Filogenia , Análise de Componente Principal , Solo , Especificidade da Espécie
4.
Proc Natl Acad Sci U S A ; 114(17): E3444-E3451, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28373546

RESUMO

A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification-that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We tested this hypothesis in the context of the Qinghai-Tibetan Plateau (QTP) and adjoining mountain ranges, using the phylogenetic and geographic histories of multiple groups of plants to infer the tempo (rate) and mode (colonization versus in situ diversification) of biotic assembly through time and across regions. We focused on the Hengduan Mountains region, which in comparison with the QTP and Himalayas was uplifted more recently (since the late Miocene) and is smaller in area and richer in species. Time-calibrated phylogenetic analyses show that about 8 million y ago the rate of in situ diversification increased in the Hengduan Mountains, significantly exceeding that in the geologically older QTP and Himalayas. By contrast, in the QTP and Himalayas during the same period the rate of in situ diversification remained relatively flat, with colonization dominating lineage accumulation. The Hengduan Mountains flora was thus assembled disproportionately by recent in situ diversification, temporally congruent with independent estimates of orogeny. This study shows quantitative evidence for uplift-driven diversification in this region, and more generally, tests the hypothesis by comparing the rate and mode of biotic assembly jointly across time and space. It thus complements the more prevalent method of examining endemic radiations individually and could be used as a template to augment such studies in other biodiversity hotspots.


Assuntos
Altitude , Biodiversidade , Fenômenos Fisiológicos Vegetais , Plantas , China
5.
Ann Bot ; 123(7): 1147-1158, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-30861064

RESUMO

BACKGROUND AND AIMS: The inverse correlation between atmospheric CO2 partial pressure (pCO2) and stomatal frequency in many plants has been widely used to estimate palaeo-CO2 levels. However, apparent discrepancies exist among the obtained estimates. This study attempts to find a potential proxy for palaeo-CO2 concentrations by analysing the stomatal frequency of Quercus glauca (section Cyclobalanopsis, Fagaceae), a dominant species in East Asian sub-tropical forests with abundant fossil relatives. METHODS: Stomatal frequencies of Q. glauca from three material sources were analysed: seedlings grown in four climatic chambers with elevated CO2 ranging from 400 to 1300 ppm; extant samples collected from 14 field sites at altitudes ranging from 142 to 1555 m; and 18 herbarium specimens collected between 1930 and 2011. Stomatal frequency-pCO2 correlations were determined using samples from these three sources. KEY RESULTS: An inverse correlation between stomatal frequency and pCO2 was found for Q. glauca through cross-validation of the three material sources. The combined calibration curves integrating data of extant altitudinal samples and historical herbarium specimens improved the reliability and accuracy of the curves. However, materials in the climatic chambers exhibited a weak response and relatively high stomatal frequency possibly due to insufficient treatment time. CONCLUSIONS: A new inverse stomatal frequency-pCO2 correlation for Q. glauca was determined using samples from three sources. These three material types show the same response, indicating that Q. glauca is sensitive to atmospheric pCO2 and is an ideal proxy for palaeo-CO2 levels. Quercus glauca is a nearest living relative (NLR) of section Cyclobalanopsis fossils, which are widely distributed in the strata of East Asia ranging from the Eocene to Pliocene, thereby providing excellent materials to reconstruct the atmospheric CO2 concentration history of the Cenozoic. Quercus glauca will add to the variety of proxies that can be widely used in addition to Ginkgo and Metasequoia.


Assuntos
Quercus , Dióxido de Carbono , Ásia Oriental , Fósseis , Folhas de Planta , Reprodutibilidade dos Testes
6.
New Phytol ; 207(2): 313-326, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25690582

RESUMO

Recent developments in phylogenetic methods have made it possible to reconstruct evolutionary radiations from extant taxa, but identifying the triggers of radiations is still problematic. Here, we propose a conceptual framework to explore the role of variables that may impact radiations. We classify the variables into extrinsic conditions vs intrinsic traits, whether they provide background conditions, trigger the radiation, or modulate the radiation. We used three clades representing angiosperm phylogenetic and structural diversity (Ericaceae, Fagales and Poales) as test groups. We located radiation events, selected variables potentially associated with diversification, and inferred the temporal sequences of evolution. We found 13 shifts in diversification regimes in the three clades. We classified the associated variables, and determined whether they originated before the relevant radiation (backgrounds), originated simultaneously with the radiations (triggers), or evolved later (modulators). By applying this conceptual framework, we establish that radiations require both extrinsic conditions and intrinsic traits, but that the sequence of these is not important. We also show that diversification drivers can be detected by being more variable within a radiation than conserved traits that only allow occupation of a new habitat. This framework facilitates exploration of the causative factors of evolutionary radiations.


Assuntos
Biodiversidade , Evolução Biológica , Magnoliopsida/genética , Filogenia , Plantas/genética , Ecossistema , Especiação Genética , Fenótipo
7.
New Phytol ; 207(2): 355-367, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25530223

RESUMO

Mountains are often more species-rich than lowlands. This could be the result of migration from lowlands to mountains, of a greater survival rate in mountains, or of a higher diversification rate in mountains. We investigated this question in the globally distributed family Ericaceae, which includes c. 4426 species ranging from sea level to > 5000 m. We predict that the interaction of low specific leaf area (SLA) and montane habitats is correlated with increased diversification rates. A molecular phylogeny of Ericaceae based on rbcL and matK sequence data was built and dated with 18 fossil calibrations and divergence time estimates. We identified radiations using bamm and correlates of diversification rate changes using binary-state speciation and extinction (BiSSE) and multiple-state speciation and extinction (MuSSE) analyses. Analyses revealed six largely montane radiations. Lineages in mountains diversified faster than nonmountain lineages (higher speciation rate, but no difference in extinction rate), and lineages with low SLA diversified faster than high-SLA lineages. Further, habitat and trait had a positive interactive effect on diversification. Our results suggest that the species richness in mountains is the result of increased speciation rather than reduced extinction or increased immigration. Increased speciation in Ericaceae was facilitated by low SLA.


Assuntos
Altitude , Biodiversidade , Evolução Biológica , Ericaceae/genética , Filogenia , Ecossistema , Extinção Biológica , Especiação Genética , Fenótipo , Dispersão Vegetal , Folhas de Planta
8.
Ann Bot ; 115(5): 777-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681824

RESUMO

BACKGROUND AND AIMS: The inverse relationship between atmospheric CO2 partial pressure (pCO2) and stomatal frequency in many species of plants has been widely used to estimate palaeoatmospheric CO2 (palaeo-CO2) levels; however, the results obtained have been quite variable. This study attempts to find a potential new proxy for palaeo-CO2 levels by analysing stomatal frequency in Quercus guyavifolia (Q. guajavifolia, Fagaceae), an extant dominant species of sclerophyllous forests in the Himalayas with abundant fossil relatives. METHODS: Stomatal frequency was analysed for extant samples of Q. guyavifolia collected from17 field sites at altitudes ranging between 2493 and 4497 m. Herbarium specimens collected between 1926 and 2011 were also examined. Correlations of pCO2-stomatal frequency were determined using samples from both sources, and these were then applied to Q. preguyavaefolia fossils in order to estimate palaeo-CO2 concentrations for two late-Pliocene floras in south-western China. KEY RESULTS: In contrast to the negative correlations detected for most other species that have been studied, a positive correlation between pCO2 and stomatal frequency was determined in Q. guyavifolia sampled from both extant field collections and historical herbarium specimens. Palaeo-CO2 concentrations were estimated to be approx. 180-240 ppm in the late Pliocene, which is consistent with most other previous estimates. CONCLUSIONS: A new positive relationship between pCO2 and stomatal frequency in Q. guyavifolia is presented, which can be applied to the fossils closely related to this species that are widely distributed in the late-Cenozoic strata in order to estimate palaeo-CO2 concentrations. The results show that it is valid to use a positive relationship to estimate palaeo-CO2 concentrations, and the study adds to the variety of stomatal density/index relationships that available for estimating pCO2. The physiological mechanisms underlying this positive response are unclear, however, and require further research.


Assuntos
Dióxido de Carbono/metabolismo , Estômatos de Plantas/fisiologia , Quercus/fisiologia , Atmosfera , Fósseis , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estômatos de Plantas/anatomia & histologia , Quercus/anatomia & histologia
9.
J Plant Res ; 128(5): 747-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26141513

RESUMO

Cedrelospermum (Ulmaceae) is an extinct genus with extensive fossil records in Europe and North America. However, no fossil of the genus has been reported from Asia. Here we describe Cedrelospermum asiaticum L.B. Jia, Y.J. Huang et Z.K. Zhou sp. nov. based on compressed fruits from the late Miocene of Yunnan, southwestern China. The fossil fruits are characterized by an ovate fruit body adjoined by double wings, with the veins on the primary wing converging toward a stigmatic area. According to the historical geographic distribution of the genus, we hypothesize that Cedrelospermum originated in North America where both single-winged and double-winged fruits were reported. The single-winged form subsequently spread into Europe via the North Atlantic land bridge and the double-winged form dispersed into Asia via the Bering land bridge. From the Eocene to Oligocene, a southward retreat of the genus distribution probably took place, which coincided with the global surface cooling initiated during the Eocene-Oligocene transition. The extinction of Cedrelospermum from Asia may be related to the intensification of the East Asian monsoon.


Assuntos
Fósseis/anatomia & histologia , Dispersão Vegetal , Ulmaceae/anatomia & histologia , China , Frutas/anatomia & histologia , Frutas/classificação , Folhas de Planta/anatomia & histologia , Folhas de Planta/classificação , Ulmaceae/classificação
10.
Innovation (Camb) ; 4(3): 100417, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37091911

RESUMO

Documenting the origins of megadiverse (sub)tropical aquatic ecosystems is an important goal for studies of evolution and ecology. Nonetheless, the geological and ecological establishment of the modern Yangtze River remains poorly understood. Here, we reconstruct the geographic and ecological history of an endemic clade of East Asian fishes based on the mitochondrial phylogenomics analysis of Cyprinidae using 15 fossil calibrations. We estimate an ancestral condition of benthic spawning with demersal or adhesive eggs in southern East Asia before ∼23 Ma and a derived condition of riverine spawning with semibuoyant eggs in the Yangtze by ∼18 Ma. These results imply the formation of Yangtze riverine ecosystems around the Oligocene-Miocene boundary in response to plateau uplift and monsoon strengthening. Some of these cyprinids reverted to benthic spawning with adhesive eggs by ∼15 Ma, a time of rising to peak net diversification rates, indicating the formation of potamo-lacustrine ecosystems by the mid-Miocene during a strong East Asian summer monsoon. Our study provides increased spatiotemporal resolution for the co-evolutionary histories of the Yangtze River and its biodiversity and highlights biological evidence concerning the geomorphological dynamics of the Yangtze River.

11.
Sci Adv ; 9(17): eade9510, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115923

RESUMO

The colonization and expansion of plants on land is considered one of the most profound ecological revolutions, yet the precise timing remains controversial. Because land vegetation can enhance weathering intensity and affect terrigenous input to the ocean, changes in terrestrial plant biomass with distinct negative Δ199Hg and Δ200Hg signatures may overwrite the positive Hg isotope signatures commonly found in marine sediments. By investigating secular Hg isotopic variations in the Paleozoic marine sediments from South China and peripheral paleocontinents, we highlight distinct negative excursions in both Δ199Hg and Δ200Hg at Stage level starting in the early Silurian and again in the Carboniferous. These geochemical signatures were driven by increased terrestrial contribution of Hg due to the rapid expansion of vascular plants. These excursions broadly coincide with rising atmospheric oxygen concentrations and global cooling. Therefore, vascular plants were widely distributed on land during the Ordovician-Silurian transition (~444 million years), long before the earliest reported vascular plant fossil, Cooksonia (~430 million years).


Assuntos
Monitoramento Ambiental , Mercúrio , Isótopos de Mercúrio/análise , Isótopos , Plantas
12.
BMC Plant Biol ; 12: 58, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22546007

RESUMO

BACKGROUND: Incarvillea sinensis is widely distributed from Southwest China to Northeast China and in the Russian Far East. The distribution of this species was thought to be influenced by the uplift of the Qinghai-Tibet Plateau and Quaternary glaciation. To reveal the imprints of geological events on the spatial genetic structure of Incarvillea sinensis, we examined two cpDNA segments ( trnH- psbA and trnS- trnfM) in 705 individuals from 47 localities. RESULTS: A total of 16 haplotypes was identified, and significant genetic differentiation was revealed (GST =0.843, NST = 0.975, P < 0.05). The survey detected two highly divergent cpDNA lineages connected by a deep gap with allopatric distributions: the southern lineage with higher genetic diversity and differentiation in the eastern Qinghai-Tibet Plateau, and the northern lineage in the region outside the Qinghai-Tibet Plateau. The divergence between these two lineages was estimated at 4.4 MYA. A correlation between the genetic and the geographic distances indicates that genetic drift was more influential than gene flow in the northern clade with lower diversity and divergence. However, a scenario of regional equilibrium between gene flow and drift was shown for the southern clade. The feature of spatial distribution of the genetic diversity of the southern lineage possibly indicated that allopatric fragmentation was dominant in the collections from the eastern Qinghai-Tibet Plateau. CONCLUSIONS: The results revealed that the uplift of the Qinghai-Tibet Plateau likely resulted in the significant divergence between the lineage in the eastern Qinghai-Tibet Plateau and the other one outside this area. The diverse niches in the eastern Qinghai-Tibet Plateau created a wide spectrum of habitats to accumulate and accommodate new mutations. The features of genetic diversity of populations outside the eastern Qinghai-Tibet Plateau seemed to reveal the imprints of extinction during the Glacial and the interglacial and postglacial recolonization. Our study is a typical case of the significance of the uplift of the Qinghai-Tibet Plateau and the Quaternary Glacial in spatial genetic structure of eastern Asian plants, and sheds new light on the evolution of biodiversity in the Qinghai-Tibet Plateau at the intraspecies level.


Assuntos
Bignoniaceae/genética , Evolução Molecular , Estruturas Genéticas/genética , Variação Genética/genética , Sequência de Bases , Bignoniaceae/fisiologia , China , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA de Plantas/química , DNA de Plantas/genética , Ecossistema , Haplótipos , Dados de Sequência Molecular , Filogeografia , Análise de Sequência de DNA
13.
Plant Divers ; 44(5): 505-517, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187547

RESUMO

Though Berberis (Berberidaceae) is widely distributed across the Eurasian landmass it is most diverse in the Himalaya-Hengduan Mountain (HHM) region. There are more than 200 species in China where it is one of the most common mountain shrubs. The study on the taxonomy and evolution of Berberis in this region can thus provide an important insight into the origin and diversification of its flora. A prerequisite to this is mapping and describing the various species of Berberis in the region - a task that despite recent progress is by no means complete. It is clear that in China there may be a significant number of species still to be described and that even with published species much about their distribution remains to be discovered. As a contribution to the first of these tasks seven new species from the northern Hengduan Mountain of N. Sichuan and S. Qinghai: Berberis chinduensis, Berberis degexianensis, Berberis jiajinshanensis, Berberis jinwu, Berberis litangensis, Berberis longquensis and Berberis riparia, are described here. Differences in overall morphology and especially in floral structures with each other and with similar species of Berberis in the same region are presented. The report is the result of phylogenetic analyses based on plastome and partial nrDNA sequences of both the seven proposed new species and a significant number of similar species already published. Provisional conclusions as to the insights provides on the history of the genetic divergence are discussed.

14.
Plant Divers ; 44(5): 455-467, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187546

RESUMO

Polyploids contribute substantially to plant evolution and biodiversity; however, the mechanisms by which they succeed are still unclear. According to the polyploid adaptation hypothesis, successful polyploids spread by repeated adaptive responses to new environments. Here, we tested this hypothesis using two tetraploid yellowcresses (Rorippa), the endemic Rorippa elata and the widespread Rorippa palustris, in the temperate biodiversity hotspot of the Hengduan Mountains. Speciation modes were resolved by phylogenetic modeling using 12 low-copy nuclear loci. Phylogeographical patterns were then examined using haplotypes phased from four plastid and ITS markers, coupled with historical niche reconstruction by ecological niche modeling. We inferred the time of hybrid origins for both species as the mid-Pleistocene, with shared glacial refugia within the southern Hengduan Mountains. Phylogeographic and ecological niche reconstruction indicated recurrent northward colonization by both species after speciation, possibly tracking denuded habitats created by glacial retreat during interglacial periods. Common garden experiment involving perennial R. elata conducted over two years revealed significant changes in fitness-related traits across source latitudes or altitudes, including latitudinal increases in survival rate and compactness of plant architecture, suggesting gradual adaptation during range expansion. These findings support the polyploid adaptation hypothesis and suggest that the spread of polyploids was aided by adaptive responses to environmental changes during the Pleistocene. Our results thus provide insight into the evolutionary success of polyploids in high-altitude environments.

15.
Mitochondrial DNA B Resour ; 6(7): 1987-1989, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34179490

RESUMO

With about 153 species, the genus Androsace (Primulaceae) is known for its horticultural and economic importance. In this study, we report the complete chloroplast genome of Androsace erecta Maximowicz, a morphologically distinct species of Sect. Orthocaulon native to the Western China. The plastome of A. erecta is highly conserved in genome size, structure, and content when compared to all previously published plastomes of the genus. The phylogenomic analysis strongly supported A. erecta as sister to a clade comprising species of Sections Aizoideia and Chamaejasme. Lastly, we selected the four most variable regions across the Androsace species plastomes (trnKUUU-rps16, trnSGCU-trnGUCC , psbE-petL, and infA-rps8), which were considered to be suitable candidate DNA barcodes for Androsace.

16.
Nat Ecol Evol ; 5(4): 449-457, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33510432

RESUMO

Flowering plants (angiosperms) are the most diverse of all land plants, becoming abundant in the Cretaceous and achieving dominance in the Cenozoic. However, the exact timing of their origin remains a controversial topic, with molecular clocks generally placing their origin much further back in time than the oldest unequivocal fossils. To resolve this discrepancy, we developed a Bayesian method to estimate the ages of angiosperm families on the basis of the fossil record (a newly compiled dataset of ~15,000 occurrences in 198 families) and their living diversity. Our results indicate that several families originated in the Jurassic, strongly rejecting a Cretaceous origin for the group. We report a marked increase in lineage accumulation from 125 to 72 million years ago, supporting Darwin's hypothesis of a rapid Cretaceous angiosperm diversification. Our results demonstrate that a pre-Cretaceous origin of angiosperms is supported not only by molecular clock approaches but also by analyses of the fossil record that explicitly correct for incomplete sampling.


Assuntos
Fósseis , Magnoliopsida , Teorema de Bayes , Humanos , Magnoliopsida/genética , Filogenia
17.
Science ; 369(6503): 578-581, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32732426

RESUMO

Understanding how alpine biotas formed in response to historical environmental change may improve our ability to predict and mitigate the threats to alpine species posed by global warming. In the world's richest temperate alpine flora, that of the Tibet-Himalaya-Hengduan region, phylogenetic reconstructions of biome and geographic range evolution show that extant lineages emerged by the early Oligocene and diversified first in the Hengduan Mountains. By the early to middle Miocene, accelerated diversification and colonization of adjacent regions were likely driven jointly by mountain building and intensification of the Asian monsoon. The alpine flora of the Hengduan Mountains has continuously existed far longer than any other alpine flora on Earth and illustrates how modern biotas have been shaped by past geological and climatic events.


Assuntos
Biodiversidade , Plantas , Chuva , Vento , Mudança Climática , Tibet
18.
Sci Rep ; 6: 27259, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251635

RESUMO

The rise of angiosperms has been regarded as a trigger for the Cretaceous revolution of terrestrial ecosystems. However, the timeframe of the rise angiosperm-dominated herbaceous floras (ADHFs) is lacking. Here, we used the buttercup family (Ranunculaceae) as a proxy to provide insights into the rise of ADHFs. An integration of phylogenetic, molecular dating, ancestral state inferring, and diversification analytical methods was used to infer the early evolutionary history of Ranunculaceae. We found that Ranunculaceae became differentiated in forests between about 108-90 Ma. Diversification rates markedly elevated during the Campanian, mainly resulted from the rapid divergence of the non-forest lineages, but did not change across the Cretaceous-Paleogene boundary. Our data for Ranunculaceae indicate that forest-dwelling ADHFs may have appeared almost simultaneously with angiosperm-dominated forests during the mid-Cretaceous, whereas non-forest ADHFs arose later, by the end of the Cretaceous terrestrial revolution. Furthermore, ADHFs were relatively unaffected by the Cretaceous-Paleogene mass extinction.


Assuntos
Magnoliopsida/crescimento & desenvolvimento , Ranunculaceae/crescimento & desenvolvimento , Biodiversidade , Evolução Biológica , Ecossistema , Extinção Biológica , Magnoliopsida/genética , Filogenia , Ranunculaceae/genética
19.
Evolution ; 69(3): 756-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25611684

RESUMO

Mediterranean-type ecosystems (MTEs) are remarkable in their species richness and endemism, but the processes that have led to this diversity remain enigmatic. Here, we hypothesize that continent-dependent speciation and extinction rates have led to disparity in diversity between the five MTEs of the world: the Cape, California, Mediterranean Basin, Chile, and Western Australia. To test this hypothesis, we built a phylogenetic tree for 280 Rhamnaceae species, estimated divergence times using eight fossil calibrations, and used Bayesian methods and simulations to test for differences in diversification rates. Rhamnaceae lineages in MTEs generally show higher diversification rates than elsewhere, but speciation and extinction dynamics show a pattern of continent-dependence. We detected high speciation and extinction rates in California and significantly lower extinction rates in the Cape and Western Australia. The independent colonization of four of five MTEs may have occurred conterminously in the Oligocene/Early Miocene, but colonization of the Mediterranean Basin happened later, in the Late Miocene. This suggests that the in situ radiations of these clades were initiated before the onset of winter rainfall in these regions. These results indicate independent evolutionary histories of Rhamnaceae in MTEs, possibly related to the intensity of climate oscillations and the geological history of the regions.


Assuntos
Especiação Genética , Filogenia , Rhamnaceae/classificação , Teorema de Bayes , Clima , DNA de Cloroplastos/genética , Ecossistema , Extinção Biológica , Fósseis , Genes de Plantas , Marcadores Genéticos , Funções Verossimilhança , Modelos Genéticos
20.
Evolution ; 68(10): 2821-32, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25041629

RESUMO

The magnitude and extent of global change during the Cenozoic is remarkable, yet the impacts of these global changes on the biodiversity and evolutionary dynamics of species diversification remain poorly understood. To investigate this question, we combine paleontological and neontological data for the angiosperm order Fagales, an ecologically important clade of about 1370 species of trees with an exceptional fossil record. We show differences in patterns of accumulation of generic diversity, species richness, and turnover rates for Fagales. Generic diversity evolved rapidly since the Late Cretaceous and peaked during the Eocene or Oligocene. Turnover rates were high during periods of extreme global climate change, but relatively low when the climate remained stable. Species richness accumulated gradually throughout the Cenozoic, possibly at an accelerated pace after the Middle Miocene. Species diversification occurred in new environments: Quercoids radiating in Oligocene subtropical seasonally arid habitats, Casuarinaceae in Australian pyrophytic biomes, and Betula in Late Neogene holarctic habitats. These radiations were counterbalanced by regional extinctions in Late Neogene mesic warm-temperate forests. Thus, the overall diversification at species level is linked to regional radiations of clades with appropriate ecologies exploiting newly available habitats.


Assuntos
Evolução Biológica , Fósseis , Especiação Genética , Magnoliopsida/classificação , Filogenia , Mudança Climática , Ecossistema , Extinção Biológica , Modelos Genéticos , Árvores/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA