Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Inorg Chem ; 63(14): 6276-6284, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38546717

RESUMO

Molecules with high point-group symmetry are interesting prototype species in the textbook. As transition metal-centered boron clusters tend to have highly symmetric structures to fulfill multicenter bonding and high stability, new boron clusters with rare point-group symmetry may be viable. Through in-depth scrutiny over the structures of experimentally already observed transition metal-centered boron-wheel complexes, geometric and electronic design principles are summarized, based on which we studied M©B11k- (M = Y, La; Zr, Hf; k = 1, 2) clusters and found that a Y©B112- boron-wheel complex has an unprecedented D11h point-group symmetry. The remarkable stability of the planar Y©B112- complex is illustrated via extensive global-minimum structural search as well as comprehensive chemical bonding analyses. Similar to other boron-wheel complexes, the Y©B112- complex is shown to possess σ and π double aromaticity, indeed following the electronic design principle previously summarized. This new compound is expected to be experimentally identified, which will extend the currently known largest possible planar molecular symmetry and enrich the metal-centered boron-wheel class.

2.
Nature ; 557(7707): 674-678, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29795342

RESUMO

Protein ubiquitination is a multifaceted post-translational modification that controls almost every process in eukaryotic cells. Recently, the Legionella effector SdeA was reported to mediate a unique phosphoribosyl-linked ubiquitination through successive modifications of the Arg42 of ubiquitin (Ub) by its mono-ADP-ribosyltransferase (mART) and phosphodiesterase (PDE) domains. However, the mechanisms of SdeA-mediated Ub modification and phosphoribosyl-linked ubiquitination remain unknown. Here we report the structures of SdeA in its ligand-free, Ub-bound and Ub-NADH-bound states. The structures reveal that the mART and PDE domains of SdeA form a catalytic domain over its C-terminal region. Upon Ub binding, the canonical ADP-ribosyltransferase toxin turn-turn (ARTT) and phosphate-nicotinamide (PN) loops in the mART domain of SdeA undergo marked conformational changes. The Ub Arg72 might act as a 'probe' that interacts with the mART domain first, and then movements may occur in the side chains of Arg72 and Arg42 during the ADP-ribosylation of Ub. Our study reveals the mechanism of SdeA-mediated Ub modification and provides a framework for further investigations into the phosphoribosyl-linked ubiquitination process.


Assuntos
Legionella pneumophila/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Arginina/metabolismo , Proteínas de Bactérias , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , NAD/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Especificidade por Substrato , Ubiquitina/química
3.
Angew Chem Int Ed Engl ; 63(3): e202313491, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37990769

RESUMO

Constructing ambient-stable, single-atom-layered metal-based materials with atomic precision and understanding their underlying stability mechanisms are challenging. Here, stable single-atom-layered nanoclusters of Pd were synthesized and precisely characterized through electrospray ionization mass spectrometry and single-crystal X-ray crystallography. A pseudo-pentalene-like Pd8 unit was found in the nanocluster, interacting with two syn PPh units through nonmetal-to-metal -ring coordination. The unexpected coordination, which is distinctly different from the typical organoring-to-metal coordination in half-sandwich-type organometallic compounds, contributes to the ambient stability of the as-obtained single-atom-layered nanocluster as revealed through theoretical and experimental analyses. Furthermore, quantum chemical calculations revealed dominant electron transition along the horizontal x-direction of the Pd8 plane, indicating high photothermal conversion efficiency (PCE) of the nanocluster, which was verified by the experimental PCE of 73.3 %. Therefore, this study unveils the birth of a novel type of compound and the finding of the unusual nonmetal-to-metal -ring coordination and has important implications for future syntheses, structures, properties, and structure-property correlations of single-atom-layered metal-based materials.

4.
Small ; 19(49): e2305056, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37632298

RESUMO

Doping Cd atom(s) into gold clusters is very promising in both theoretical study and practical applications. However, it has long been a challenge to synthesize heavily Cd-doped AuCd bimetallic clusters and thereby reveal their structure-property correlations. Herein a novel AuCd bimetallic cluster: Au16 Cd16 (SC6 H11 )20 (SC6 H11 denotes deprotonated cyclohexanethiol) with a Cd to Au atomic ratio of 1:1 is reported. The precise structure of the cluster determined by single crystal X-ray diffraction demonstrates that it has a unique hexatetrahedron Au14 core and a distinctive shell. Intriguingly, due to the special protecting motifs, the cluster exhibits high stability in various conditions studied, indicating that the geometric structure is crucial in determining the stability of the cluster. Most importantly, the photothermal property of the cluster has been investigated in comparison with those of M13 -kernel (M denotes metal atoms) clusters, and the results imply that the compactness and the Cd atom doping of the core play important roles in dictating the photothermal effect of the cluster. The authors believe that this work will provide some ideas for the rational design of clusters with high stability and excellent photothermal property.

5.
J Am Chem Soc ; 144(31): 14248-14257, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35737965

RESUMO

The capability of precisely constructing bimetallic clusters with atomic accuracy provides exciting opportunities for establishing their structure-property correlations. However, the chemistry (the charge state of precursors, the property of ligands, the amount of dopant, and so forth) dictating the fabrication of clusters with atomic-level control has been a long-standing challenge. Herein, based on the well-defined Au25(SR)18 cluster (SR = thiolates), we have systematically investigated the factors of steric hindrance and electronic effect of ligands, the charge state of Au25(SR)18, and the amount of dopant that may determine the structure of AuCd clusters. It is revealed that [Au19Cd3(SR)18]- can be obtained when a ligand of smaller steric hindrance is used, while Au24Cd(SR)18 is attained when a larger steric hindrance ligand is used. In addition, negatively charged [Au25(SR)18]- is apt to form [Au19Cd3(SR)18]- during Cd doping, while Au24Cd(SR)18 is produced when neutral Au25(SR)18 is used as a precursor. Intriguingly, the reversible transformation between [Au19Cd3(SR)18]- and Au24Cd(SR)18 is feasible by subtly manipulating ligands with different steric hindrances. Most importantly, by introducing the excess amount of dopant, a novel bimetallic cluster, Au4Cd4(SR)12 is successfully fabricated and its total structure is fully determined. The electronic structures and the chirality of Au4Cd4(SR)12 have been elucidated by density functional theory (DFT) calculations. Au4Cd4(SR)12 reported herein represents the smallest AuCd bimetallic cluster with chirality.

6.
Inorg Chem ; 61(31): 12349-12355, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35877827

RESUMO

While a series of trinuclear rare-earth metal methylene (divalent >CH2) complexes with the so-called "ionic carbene" have been known for decades, the nature of metal-carbene interactions in this class of compounds remains elusive. Herein, a quantum chemical investigation has been performed to reveal the bonding nature in typical trimetallic "ionic carbene" species with the [M3(µ3-CH2)] (M = Sc, Y, La, and Ac) cluster core. Through various chemical bonding analyses, we have demonstrated that there exists a non-negligible covalent interaction between µ3-CH2 and M3 moieties, and the chemical bonding can be accounted for with two three-center two-electron (3c-2e) bonds. The chemical bonding analyses reveal that the metal d-electron configuration plays an important role in stabilizing various µ3-coordinated carbene complexes. The late transition metals do not favor such a µ3-coordination geometry, thus explaining why ionic carbene complexes are usually found for rare-earth and early transition metals. A series of ionic carbene complexes with early transition metals, lanthanides, and actinides are predicted to be stable as well. These reactive ionic carbene complexes may have characteristic properties for organic synthesis and catalysis.

7.
J Am Chem Soc ; 143(31): 12261-12267, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324334

RESUMO

The first linear silver supercluster based on icosahedral Ag13 units has been constructed via bridging of dpa ligands: Ag61(dpa)27(SbF6)4 (Hdpa = dipyridylamine) (Ag61). Single-crystal X-ray diffraction reveals that this rod-shaped cluster consists of four vertex-sharing Ag13 icosahedra in a linear arrangement. This Ag61 cluster represents the longest one-dimensional metal nanocluster with a resolved structure. Unprecedented electron coupling develops between their constituent Ag13 units. Theoretical studies disclose that the stabilities of the two superclusters are dictated by a strong interaction between the Ag13 units as well as the ligand effect of the dpa-Ag motifs. The quantum size effect accounts for the significant enhancement of the metal-related absorptions and the red shift at the near-infrared region as the length of the cluster increases. This work sheds light on the evolution of one-dimensional materials and an understanding of the electronic communication between the constituent clusters.

8.
Chemphyschem ; 22(4): 378-385, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33289945

RESUMO

Single-atom catalysts (SACs) have attracted extensive attention owing to their high catalytic activity. The development of efficient SACs is crucial for applications in heterogeneous catalysis. In this article, the geometric configuration, electronic structure, stabilitiy and catalytic performance of phosphorene (Pn) supported single metal atoms (M=Ru, Rh, Pd, Ir, Pt, and Au) have been systematically investigated using density functional theory calculations and ab initio molecular dynamics simulations. The single atoms are found to occupy the hollow site of phosphorene. Among the catalysts studied, Ru-decorated phosphorene is determined to be a potential catalyst by evaluating adsorption energies of gaseous molecules. Various mechanisms including the Eley-Rideal (ER), Langmuir-Hinshelwood (LH) and trimolecular Eley-Rideal (TER) mechanisms are considered to validate the most favourable reaction pathway. Our results reveal that Ru-Pn exhibits outstanding catalytic activity toward CO oxidation reaction via TER mechanism with the corresponding rate-determining energy barrier of 0.44 eV, making it a very promising SAC for CO oxidation under mild conditions. Overall, this work may provide a new avenue for the design and fabrication of two-dimensional materials supported SACs for low-temperature CO oxidation.

9.
Inorg Chem ; 60(24): 18924-18937, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34878759

RESUMO

The influence of the pincer platform composition and substitution on the reactivity and physical properties of pincer complexes can be easily explored through different experimental techniques. However, the influence of these factors on the molecular structures and thermodynamic stability of pincer complexes is usually very subtle and cannot always be unambiguously established. To rationalize this subtle influence, a survey of crystallographic data from 130 group 10 metal pincer complexes supported by benzene-based PYCYP pincer ligands, [2,6-(R2PY)2C6H3-nR'n]MX (Y = CH2, NH, O, S; M = Ni, Pd, Pt; R = tBu, iPr, Ph, Cy, Me; R' = CO2Me, tBu, CF3, Ac; n = 0-2; X = F, Cl, Br, I, H, SH, SPh, SBn, Ph, Me, N3, NCS), was carried out. Theoretical calculations for some selected complexes were performed to evaluate the relative bond strength. It was found that the M-Cipso bond length decreases following the linker series of CH2 > NH > O and that the relative M-Cipso bond strength increases following the linker series of CH2 < NH < O. In most cases, the M-P bond length decreases following the linker series of NH > CH2 > O. The relative M-P bond strength increases following the linker series of CH2 < NH < O. A comparison of the thermochemical balance for the isodesmic displacement of the side-arm interactions with PH3 as a probe ligand indicated that the Ni-P bond in a PCCCP-type pincer complex is far less difficult to break compared with that in a POCOP-type complex. As a result, with the same donor substituents and the same auxiliary ligand, the POCOP-type pincer complexes are thermodynamically more stable than the PCCCP complexes. The influence of other backbone and donor substitutions as well as the pincer platform composition on the M-Cipso, M-P, and M-X bond lengths, relative bond strengths, and P-M-P bite angles was also discussed.

10.
Inorg Chem ; 60(13): 9504-9515, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34152757

RESUMO

The 24 trioxide halide molecules MO3X of the manganese group (M = Mn-Bh; X = F-Ts), which are iso-valence-electronic with the famous MnO4- ion, have been quantum-chemically investigated by quasi-relativistic density-functional and ab initio correlated approaches. Geometric and electronic structures, valence and oxidation numbers, vibrational and electronic spectral properties, energetic stabilities of the monomers in the gas phase, and the decay mode of MnO3F have been investigated. The light Mn-3d species are most strongly electron-correlated, indicating that the concept of a closed-shell Lewis-type single-configurational structure [Mn+7(d0) O-2(p6)3 F-(p6)] reaches its limits. The concept of real-valued spin orbitals φ(r)·α and φ(r)·ß breaks down for the heavy Bh-6d, At-6p and Ts-7p elements because of the dominating spin-orbit coupling. The vigorous decomposition of MnO3F at ambient conditions starts by the autocatalyzed release of n O2 and the formation of MnmO3m-2nFm clusters, triggered by the electron-depleted "oxylic" character of the oxide ligands in MnO3X.

11.
J Phys Chem A ; 125(21): 4606-4613, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34014680

RESUMO

The strong relativistic effects result in many interesting chemical and physical properties for gold and gold compounds. One of the most surprising findings has been that small gold clusters prefer planar structures. Dopants can be used to tune the electronic and structural properties of gold nanoclusters. Here we report an experimental and theoretical investigation of a Zn-doped gold cluster, Au9Zn-. Photoelectron spectroscopy reveals that Au9Zn- is a highly stable electronic system with an electron binding energy of 4.27 eV. Quantum chemical studies show that the global minimum of Au9Zn- has a D3h structure with a closed-shell electron configuration (1A1'), which can be viewed as replacing the central Au atom by Zn in the open-shell parent Au10- cluster. The high electronic stability of Au9Zn- is corroborated by its extremely large HOMO-LUMO gap of 3.3 eV. Chemical bonding analyses revealed that the D3h Au9Zn- are bonded by two sets of delocalized σ bonds, giving rise to double σ aromaticity and its remarkable stability. Two planar low-lying isomers are also observed, corresponding to a similar triangular structure with the Zn atom on the edge and another one with one of the corner Au atoms moved to the edge of the triangle.

12.
Angew Chem Int Ed Engl ; 59(21): 8270-8276, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32003098

RESUMO

Ligand-induced surface restructuring with heteroatomic doping is used to precisely modify the surface of a prototypical [Au25 (SR1 )18 ]- cluster (1) while maintaining its icosahedral Au13 core for the synthesis of a new bimetallic [Au19 Cd3 (SR2 )18 ]- cluster (2). Single-crystal X-ray diffraction studies reveal that six bidentate Au2 (SR1 )3 motifs (L2) attached to the Au13 core of 1 were replaced by three quadridentate Au2 Cd(SR2 )6 motifs (L4) to create a bimetallic cluster 2. Experimental and theoretical results demonstrate a stronger electronic interaction between the surface motifs (Au2 Cd(SR2 )6 ) and the Au13 core, attributed to a more compact cluster structure and a larger energy gap of 2 compared to that of 1. These factors dramatically enhance the photoluminescence quantum efficiency and lifetime of crystal of the cluster 2. This work provides a new route for the design of a wide range of bimetallic/alloy metal nanoclusters with superior optoelectronic properties and functionality.

13.
J Am Chem Soc ; 141(7): 3014-3023, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30673269

RESUMO

Oxygen electrochemistry plays a critical role in clean energy technologies such as fuel cells and electrolyzers, but the oxygen evolution reaction (OER) severely restricts the efficiency of these devices due to its slow kinetics. Here, we show that via incorporation of lithium ion into iridium oxide, the thus obtained amorphous iridium oxide (Li-IrO x) demonstrates outstanding water oxidation activity with an OER current density of 10 mA/cm2 at 270 mV overpotential for 10 h of continuous operation in acidic electrolyte. DFT calculations show that lithium incorporation into iridium oxide is able to lower the activation barrier for OER. X-ray absorption characterizations indicate that both amorphous Li-IrO x and rutile IrO2 own similar [IrO6] octahedron units but have different [IrO6] octahedron connection modes. Oxidation of iridium to higher oxidation states along with shrinkage in the Ir-O bond was observed by in situ X-ray absorption spectroscopy on amorphous Li-IrO x, but not on rutile IrO2 under OER operando conditions. The much more "flexible" disordered [IrO6] octahedrons with higher oxidation states in amorphous Li-IrO x as compared to the periodically interconnected "rigid" [IrO6] octahedrons in crystalline IrO2 are able to act as more electrophilic centers and thus effectively promote the fast turnover of water oxidation.

14.
Mol Pharm ; 16(1): 318-326, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30511872

RESUMO

We aim to understand the potential impact of a modest chemical modification of a drug molecule on the downstream design of its amorphous solid dispersion (ASD) formulation. To this end, we used sorafenib (SOR) and its fluorinated form, regorafenib (REG), as model drugs, to assess the impact of a single hydrogen substitution by fluorine on the molecular interaction and miscibility between drug and PVP or PVP-VA, two commonly used polymers for ASDs. In this study, we observed that the Tg values of PVP or PVP-VA based ASDs of SOR deviated positively from the Gordon-Taylor prediction, which assumes ideal mixing, yet the Tg of REG ASDs deviated negatively from or matched well with the ideal mixing model, suggesting much stronger drug-polymer interactions in SOR ASDs compared with the REG ASDs. Using solution NMR and computational methods, we proved that a six-member-ring formed between the carbonyl groups on the polymers and the uramido hydrogen of SOR or REG, through intermolecular hydrogen bonding. However, steric hindrance resulting from fluorination in REG caused weaker interaction between REG-polymer than SOR-polymer. To further confirm this mechanism, we investigated the molecular interactions of other two uramido-containing model compounds, triclocarban (TCC) and gliclazide (GCZ), with PVP. We found that TCC but not GCZ formed a hexatomic ring with PVP. We concluded that PVP based polymers can easily interact with N, N'-disubstituted urea compounds with a trans-trans structure in the form of hexatomic rings, and the interaction strength of the hexatomic ring largely depended on the chemistry of drug molecules. This study illustrated that even a slight chemical modification on drug molecules could result in substantial difference in drug-polymer interactions, thus significantly impacting polymer selection and pharmaceutical performance of their ASD formulations.


Assuntos
Flúor/química , Polímeros/química , Sorafenibe/química , Carbanilidas/química , Gliclazida/química , Hidrogênio , Compostos de Fenilureia/química , Povidona/química , Piridinas/química
15.
Angew Chem Int Ed Engl ; 58(18): 5906-5909, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30779456

RESUMO

A golden fullerene Au32 cluster has been synthesized with amido and phosphine ligands as the protecting agents. Single-crystal X-ray structural analysis revealed that this gold nanocluster, [Au32 (Ph3 P)8 (dpa)6 ] (SbF6 )2 (Hdpa=2,2'-dipyridylamine), has a stable pseudo-Ih Au32 8+ core with S6 symmetry, which features an Au12 @Au20 Keplerate cage co-protected by Ph3 P and dpa ligands. Quantum-chemical studies were conducted to elucidate the origin of the special stability of this cluster, and suggest that it is electronically stabilized through metal-ligand interactions.

16.
Angew Chem Int Ed Engl ; 58(25): 8367-8371, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31013397

RESUMO

We report the characterization of the compound [K([2.2.2]crypt)]4 [In8 Sb13 ], which proves to contain a 1:1 mixture of [Sb@In8 Sb12 ]3- and [Sb@In8 Sb12 ]5- . The tri-anion displays perfect Th symmetry, the first completely inorganic molecule to do so, and contains eight equivalent In3+ centers in a cube. The gas-phase potential energy surface of the penta-anion has eight equivalent minima where the extra pair of electrons is localized on one In+ center, and these minima are linked by low-lying transition states where the electron pair is delocalized over two adjacent centers. The best fit to the electron density is obtained from a model where the structure of the 5- cluster lies close to the gas-phase transition state.

17.
Angew Chem Int Ed Engl ; 57(30): 9419-9424, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29855129

RESUMO

Two salts (2 and 4) containing the radical cations of complexed diphosphenes have been isolated and characterized by electron paramagnetic resonance (EPR) spectroscopy, IR spectroscopy, and single-crystal X-ray diffraction. The P-P bond is coordinated to the Cr center either in an end-on (in 2) or a side-on (in 4) fashion. The spin density of the radical is delocalized over the Cr atom and the two P atoms in 2 whereas the unpaired electron is mainly localized on the Cr atom in 4. This work provides the first example of a complexed diphosphene radical (2) featuring novel three-center three-electron (3c-3e) π-bonding in the Cr-P-P unit, and the first example of a 17 e Cr radical with a side-on π-bonded ligand (4).

18.
Inorg Chem ; 54(23): 11157-67, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26550845

RESUMO

Systematic theoretical and experimental investigations have been performed to understand the periodicity, electronic structures, and bonding of gold halides using tetrahalide [AuX4](-) anions (X = F, Cl, Br, I, At, Uus). The [AuX4](-) (X = Cl, Br, I) anions were experimentally produced in the gas phase, and their negative-ion photoelectron spectra were obtained, exhibiting rich and well-resolved spectral peaks. As expected, Au-X bonds in such series contain generally increasing covalency when halogen ligands become heavier. We calculated the adiabatic electron detachment energies as well as vertical electron detachment energies using density functional theory methods with scalar relativistic and spin-orbit coupling effects. The computationally simulated photoelectron spectra are in good agreement with the experimental ones. Our results show that the trivalent Au(III) oxidation state becomes progressively less stable while Au(I) tends to be preferred when the halides become heavier along the Periodic Table. This series of molecules provides an example for manipulating the oxidation state of metals in complexes through ligand design.

19.
Angew Chem Int Ed Engl ; 54(38): 11078-83, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26246464

RESUMO

We report the synthesis and spectroscopic characterization of the boron dicarbonyl complex [B(CO)2 ](-) . The bonding situation is analyzed and compared with the aluminum homologue [Al(CO)2 ](-) using state-of-the-art quantum chemical methods.

20.
Natl Sci Rev ; 11(4): nwad327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38487495

RESUMO

Iron-metal clusters are crucial in a variety of critical biological and material systems, including metalloenzymes, catalysts, and magnetic storage devices. However, a synthetic high-nuclear iron cluster has been absent due to the extreme difficulty in stabilizing species with direct iron-iron bonding. In this work, we have synthesized, crystallized, and characterized a (Tp*)4W4S12(Fe@Fe12) cluster (Tp* = tris(3,5-dimethyl-1-pyrazolyl)borate(1-)), which features a rare trideca-nuclear, icosahedral [Fe@Fe12] cluster core with direct multicenter iron-iron bonding between the interstitial iron (Fei) and peripheral irons (Fep), as well as Fep···Fep ferromagnetic coupling. Quantum chemistry studies reveal that the stability of the cluster arises from the 18-electron shell-closing of the [Fe@Fe12]16+ core, assisted by its bonding interactions with the peripheral tridentate [(Tp*)WS3]4- ligands which possess both S→Fe donation and spin-polarized Fe-W σ bonds. The ground-state electron spin is theoretically predicted to be S = 32/2 for the cluster. The existence of low oxidation-state (OS ∼ +1.23) iron in this compound may find interesting applications in magnetic storage, spintronics, redox chemistry, and cluster catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA