RESUMO
BACKGROUND AND OBJECTIVES: The aim of this study is to explore the long-term prognostic risk factors associated with patients diagnosed with retroperitoneal paraganglioma (RPGL) and examine their clinical and pathological characteristics. METHODS: Expressions of biomarkers were identified using immunohistochemistry (IHC) and case databases were retrospectively searched. Survival analysis was performed using Kaplan-Meier and Cox risk regression to identify the factors that influence the postoperative progression-free survival of patients with RPGL. RESULTS: A total of 105 patients, most of whom had tumors situated in the paraaortic region, and whose average tumor size was 8.6 cm, were enrolled in this study. The average follow-up duration was 51 months, with a mortality rate of 19% and a recurrence and metastasis rate of 41.9%. Tumors were assessed using the modified Grading system for Adrenal Pheochromocytoma and Paraganglioma (GAPP), and SDHB, S-100, and Ki-67 were stained using IHC in all cases. Out of the total cases examined, negative in SDHB expression were observed in 18.1% of cases, S-100 expression was negative in 36.2% of cases, and endovascular tumor enboluswas present in approximately 25.7% of cases. The results of the univariate analysis indicated that several factors significantly influenced the progression-free survival of patients with PGL as follow: maximum tumor diameter (>5.5 cm), tumor morphological features, tumor grading (modified GAPP score > 6), SDHB negative, S-100 negative, and expression of proliferation index Ki-67 (>3%) (X2 = 4.217-27.420, p < 0.05). The results of the multivariate analysis indicated that negative of S-100 (p = 0.021) and SDHB (p = 0.038), as well as intravascular tumor thrombus (p = 0.047) expression were independent risk factors for progression-free survival in patients. CONCLUSION: RPGL is characterized by diverse biological features and an elevated susceptibility to both recurrence and metastasis. Both SDHB and S-100 can be employed as traditional IHC indicators to predict the metastatic risk of PGL, whereas the tumor histomorphology-endovascular tumor enbolus assists in determining the metastasis risk of RPGL.
Assuntos
Biomarcadores Tumorais , Paraganglioma , Neoplasias Retroperitoneais , Humanos , Neoplasias Retroperitoneais/patologia , Neoplasias Retroperitoneais/metabolismo , Neoplasias Retroperitoneais/cirurgia , Neoplasias Retroperitoneais/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Paraganglioma/patologia , Paraganglioma/metabolismo , Paraganglioma/cirurgia , Paraganglioma/mortalidade , Prognóstico , Adulto , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Idoso , Taxa de Sobrevida , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/metabolismo , Seguimentos , Adulto Jovem , Succinato DesidrogenaseRESUMO
Esophageal squamous cell carcinoma (ESCC) is a common fatal malignant tumor of the digestive tract; however, its pathogenic mechanism is unknown and lacks specific molecular diagnosis and treatment. Therefore, it is particularly important to identify new tumor biomarkers to enhance the early diagnosis and molecular-targeted therapy of ESCC. Here, we found that the E3 ubiquitin ligase Tripartitemotif-containing33 (TRIM33) is highly expressed in ESCC tissues and cell lines, and is associated with adverse clinical outcomes. We determined that TRIM33 drives aerobic glycolysis to promote tumor growth in vivo and in vitro. In terms of mechanism, TRIM33 binds to p53 to inhibit its stability and promote the expression of downstream glycolysis target genes GLUT1, HK2, PKM2, and LDHA. In addition, TRIM33 promotes the polyubiquitination of P53 K48-linked and proteasome degradation. Further studies have shown that the K351 site of P53 is the key site mediating the ubiquitination of P53 K48-linked to promote aerobic glycolysis in ESCC and tumor cell growth. Our results reveal that the TRIM33-P53 signal axis regulates glycolysis during ESCC and may provide a new perspective for the diagnosis and treatment of ESCC.
Assuntos
Proliferação de Células , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Glicólise , Proteína Supressora de Tumor p53 , Ubiquitinação , Humanos , Proteína Supressora de Tumor p53/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Linhagem Celular Tumoral , Animais , Camundongos Nus , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Masculino , Camundongos Endogâmicos BALB CRESUMO
Background and Objective: Connexin 43 (Cx43) is the main gap junction (GJ) protein and hemichannel protein in bone tissue. It is involved in the formation of hemichannels and GJs and establishes channels that can communicate directly to exchange substances and signals, affecting the structure and function of osteocytes. CX43 is very important for the normal development of bone tissue and the establishment and balance of bone reconstruction. However, the molecular mechanisms by which CX43 regulates osteoblast function and homeostasis have been less well studied, and this article provides a review of research in this area. Methods: We searched the PubMed, EMBASE, Cochrane Library, and Web of Science databases for studies published up to June 2023 using the keywords Connexin 43/Cx43 and Osteocytes. Screening of literatures according to inclusion and exclusion guidelines and summarized the results. Key Content and Findings: Osteocytes, osteoblasts, and osteoclasts all express Cx43 and form an overall network through the interaction between GJs. Cx43 is not only involved in the mechanical response of bone tissue but also in the regulation of signal transduction, which could provide new molecular markers and novel targets for the treatment of certain bone diseases. Conclusions: Cx43 is expressed in osteoblasts, osteoclasts, and osteoclasts and plays an important role in regulating the function, signal transduction, and mechanotransduction of osteocytes. This review offers a new contribution to the literature by summarizing the relationship between Cx43, a key protein of bone tissue, and osteoblasts.
RESUMO
BACKGROUND: The prognostic value and clinical relevance of tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) in esophageal squamous cell carcinoma (ESCC) remain unclear. AIMS: To investigate the prognostic value and functional involvement of TILs in ESCC. METHODS: We included 40 patients across different stages of ESCC from Xinjiang. Multiplex fluorescent immunohistochemistry characterized TILs and TAMs. TILs in different tumor regions were quantified and correlated with overall survival (OS) using log-rank test and Cox regression analyses. RESULTS: Invasive ESCC exhibited increased CD4 T cells and Tregs compared to carcinoma in situ, with a higher Tregs/CD4 T cells ratio (p < 0.05). TAMs, primarily in stromal regions, were significantly associated with Foxp3+ cells (p < 0.05). Higher infiltration of stromal TAMs and a higher CD4/CD8 T cells ratio correlated with poorer OS, while a higher CD8 T/Foxp3+ cells ratio indicated better survival. Multivariate Cox analysis revealed TNM stage, tumor length, and stromal CD4/CD8 T cells ratio as independent prognostic factors (p < 0.05). An immune prognostic risk score-based nomogram was constructed to predict patient outcomes. CONCLUSIONS: The spatial distribution and abundance of TILs significantly correlated with prognosis, providing a useful immune classification for ESCC.
RESUMO
Phospholipase C epsilon 1 (PLCE1) is a well-established susceptibility gene for esophageal squamous cell carcinoma (ESCC). Identification of the underlying mechanism(s) regulated by PLCE1 could lead to a better understanding of ESCC tumorigenesis. In this study, we found that PLCE1 enhances tumor progression by regulating the replicative helicase MCM7 via two pathways. PLCE1 activated PKCα-mediated phosphorylation of E2F1, which led to the transcriptional activation of MCM7 and miR-106b-5p. The increased expression of miR-106b-5p, located in intron 13 of MCM7, suppressed autophagy and apoptosis by targeting Beclin-1 and RBL2, respectively. Moreover, MCM7 cooperated with the miR-106b-25 cluster to promote PLCE1-dependent cell-cycle progression both in vivo and in vitro. In addition, PLCE1 potentiated the phosphorylation of MCM7 at six threonine residues by the atypical kinase RIOK2, which promoted MCM complex assembly, chromatin loading, and cell-cycle progression. Inhibition of PLCE1 or RIOK2 hampered MCM7-mediated DNA replication, resulting in G1-S arrest. Furthermore, MCM7 overexpression in ESCC correlated with poor patient survival. Overall, these findings provide insights into the role of PLCE1 as an oncogenic regulator, a promising prognostic biomarker, and a potential therapeutic target in ESCC. SIGNIFICANCE: PLCE1 promotes tumor progression in ESCC by activating PKCα-mediated phosphorylation of E2F1 to upregulate MCM7 and miR-106b-5p expression and by potentiating MCM7 phosphorylation by RIOK2.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fosforilação , Proteína Quinase C-alfa/metabolismo , Linhagem Celular Tumoral , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismoRESUMO
Malignant peritoneal mesothelioma (MPM) is a rare, life-threatening malignant tumor. We present a report of a rare case of a 67-year-old male patient with MPM and severe abdominal pain, bloating, and bloody ascites as manifestations. The diagnosis was confirmed by cytology of ascites aspiration fluid and further verified by laparoscopic exploratory biopsy. The characteristics of signs and clinical manifestations in this case are less common. As everyone knows, asbestos exposure is usually associated with pleural mesothelioma, but only 6%-10% of malignant mesothelioma cases originate from the peritoneum, which is far less than pleural mesothelioma. Generally, its non-specificity provides a huge challenge to medical professionals in its diagnosis, and this is also the main reason for delayed diagnosis. Patients should be vigilant, even though no clear risk factor is observed.
Assuntos
Amianto , Mesotelioma Maligno , Mesotelioma , Neoplasias Peritoneais , Neoplasias Pleurais , Masculino , Humanos , Idoso , Mesotelioma Maligno/complicações , Ascite/diagnóstico por imagem , Ascite/etiologia , Mesotelioma/diagnóstico , Mesotelioma/etiologia , Mesotelioma/patologia , Amianto/toxicidade , Neoplasias Pleurais/diagnóstico , Neoplasias Peritoneais/diagnóstico , Neoplasias Peritoneais/etiologia , Neoplasias Peritoneais/patologiaRESUMO
Autophagy and apoptosis are dynamic processes that determine the fate of cells, and regulating these processes can treat cancer. GEFT is highly expressed in rhabdomyosarcoma (RMS), which accelerates the tumorigenicity and metastasis of RMS by activating Rac1/Cdc42 signaling, but the regulatory mechanisms of autophagy and apoptosis are unclear. In our study, we found that the RMS tissues had high Rac1, Cdc42, mTOR, and Bcl-2 expression levels and low Beclin1, LC3, and Bax expression levels compared with the normal striated muscle tissues (P < 0.05). In addition, multivariate analysis has proven that Rac1 is an independent prognostic factor (P < 0.05), and the high expression level of the Beclin1 protein was closely associated with the tumor diameter of the RMS patients (P = 0.044), whereas the high expression level of the LC3 protein was associated with the clinical stage of the RMS patients (P = 0.027). Furthermore, GEFT overexpression could inhibit autophagy and apoptosis in RMS. A Rac1/Cdc42 inhibitor was added, and the inhibition of autophagy and apoptosis decreased. Rac1 and Cdc42 could regulate mTOR to inhibit autophagy and apoptosis in RMS. Overall, these studies demonstrated that the GEFT-Rac1/Cdc42-mTOR pathway can inhibit autophagy and apoptosis in RMS and provide evidence for innovative treatments.
RESUMO
Isolated intracranial myeloid sarcoma (MS) is an unusual variant tumor with few cases reported so far in the medical literature. A 29-year-old woman was admitted to our hospital presenting progressive visual loss in the right eye and weight loss (20 kg) without a previous history of hematological disease (HD). Radiologic evaluation showed the evidence of intracranial mass. Histologically, the resected tumor was composed of a uniform population of primitive cells and primarily misdiagnosed as a T-cell non-Hodgkin's lymphoma (NHL). Chemotherapy with cyclophosphamide, doxorubicin, vinblastine, and prednisone (CHOP) was ineffective. A biopsy and histopathological evaluation were repeated, and immunohistochemical staining revealed the positivity of immature cells to an extensive panel of myeloid markers. These findings were consistent with a diagnosis of MS and bone marrow infiltration. Literature reviews of previous cases were also undertaken.