Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
BMC Genomics ; 24(1): 285, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237371

RESUMO

BACKGROUND: The genetic locus responsible for duck body size has been fully explained before, but the growth trait-related genetic basis is still waiting to be explored. For example, the genetic site related to growth rate, an important economic trait affecting marketing weight and feeding cost, is still unclear. Here, we performed genome wide association study (GWAS) to identify growth rate-associated genes and mutations. RESULT: In the current study, the body weight data of 358 ducks were recorded every 10 days from hatching to 120 days of age. According to the growth curve, we evaluated the relative and absolute growth rates (RGR and AGR) of 5 stages during the early rapid growth period. GWAS results for RGRs identified 31 significant SNPs on autosomes, and these SNPs were annotated by 24 protein-coding genes. Fourteen autosomal SNPs were significantly associated with AGRs. In addition, 4 shared significant SNPs were identified as having an association with both AGR and RGR, which were Chr2: 11483045 C>T, Chr2: 13750217 G>A, Chr2: 42508231 G>A and Chr2: 43644612 C>T. Among them, Chr2: 11483045 C>T, Chr2: 42508231 G>A, and Chr2: 43644612 C>T were annotated by ASAP1, LYN and CABYR, respectively. ASAP1 and LYN have already been proven to play roles in the growth and development of other species. In addition, we genotyped every duck using the most significant SNP (Chr2: 42508231 G>A) and compared the growth rate difference among each genotype population. The results showed that the growth rates of individuals carrying the Chr2: 42508231 A allele were significantly lower than those without this allele. Moreover, the results of the Mendelian randomization (MR) analysis supported the idea that the growth rate and birth weight had a causal effect on the adult body weight, with the growth rate having a greater effect size. CONCLUSION: In this study, 41 SNPs significantly related to growth rate were identified. In addition, we considered that the ASAP1 and LYN genes are essential candidate genes affecting the duck growth rate. The growth rate also showed the potential to be used as a reliable predictor of adult weight, providing a theoretical reference for preselection.


Assuntos
Patos , Estudo de Associação Genômica Ampla , Humanos , Adulto , Animais , Patos/genética , Locos de Características Quantitativas , Genótipo , Peso Corporal/genética , Polimorfismo de Nucleotídeo Único
2.
Anim Genet ; 54(4): 500-509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37194451

RESUMO

Sexually dimorphic plumage coloration is widespread in birds. The male possesses more brightly colored feathers than the female. Dark green head feathers comprise one of the most typical appearance characteristics of the male Ma duck compared with the female. However, there are noticeable individual differences observed in these characteristics. Herein, genome-wide association studies (GWAS) were employed to investigate the genetic basis of individual differences in male duck green head-related traits. Our results showed that 165 significant SNPs were associated with green head traits. Meanwhile, 71 candidate genes were detected near the significant SNPs, including four genes (CACNA1I, WDR59, GNAO1 and CACNA2D4) related to the individual differences in the green head traits of male ducks. Additionally, the eGWAS identified three SNPs located within two candidate genes (LOC101800026 and SYNPO2) associated with TYRP1 gene expression, and might be important regulators affecting the expression level of TYRP1 in the head skin of male ducks. Our data also suggested that transcription factor MXI1 might regulate the expression of TYRP1, thereby causing differences in the green head traits among male ducks. This study provided primary data for further analysis of the genetic regulation of duck feather color.


Assuntos
Patos , Estudo de Associação Genômica Ampla , Feminino , Masculino , Animais , Patos/genética , Plumas/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
Angew Chem Int Ed Engl ; 62(7): e202216803, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36507860

RESUMO

Active Zn species in Cu-based methanol synthesis catalysts have not been clearly identified yet due to their complex nature and dynamic structural changes during reactions. Herein, atomically dispersed Zn on ZrO2 support is established in Cu-based catalysts by separating Zn and Zr components from Cu (Cu-ZnZr) via the double-nozzle flame spray pyrolysis (DFSP) method. It exhibits superiority in methanol selectivity and yield compared to those with Cu-ZnO interface and isolated ZnO nanoparticles. Operando X-ray absorption spectroscopy (XAS) reveals that the atomically dispersed Zn species are induced during the reaction due to the strengthened Zn-Zr interaction. They can suppress formate decomposition to CO and decrease the H2 dissociation energy, shifting the reaction to methanol production. This work enlightens the rational design of unique Zn species by regulating coordination environments and offers a new perspective for exploring complex interactions in multi-component catalysts.

4.
J Am Chem Soc ; 144(49): 22589-22598, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36417274

RESUMO

Cubic α-phase molybdenum carbides (α-MoC1-x) exhibit great potential in hydrogen production at low temperatures due to their excellent activity in water dissociation. However, the design strategies of α-MoC1-x are severely restricted by the harsh synthesis conditions, which involve multistep ammonification and carburization or the utilization of a significant amount of noble metals. Herein, high-purity α-MoC1-x synthesis in a one-step carburization process was achieved with the assistance of a trace amount of Rh (0.02%). The structural evolution of Mo species during phase transition was monitored via qualitative and quantitative analysis by in situ X-ray diffraction (XRD) and in situ X-ray absorption spectroscopy (XAS), respectively. Environmental transmission electron microscopy (ETEM) was used to follow the visual changes. We reveal that the reduction of monoclinic MoO3 to cubic oxygen-deficient Mo oxide (MoOx) at low temperatures owing to the promoted H2 activation on Rh sites is vital to the following carbon atom insertion and transformation to α-MoC1-x, making the carburization follow the topological route. The systematic analysis of the relationship between the reduction behavior and the structural evolution supplies a feasible strategy for the α-MoC1-x synthesis, and in situ characterizations shed light on controlling the phase transformation during carburization.

5.
BMC Microbiol ; 22(1): 76, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296244

RESUMO

BACKGROUND: Rearing systems can affect livestock production directly, but whether they have effects on intestinal growth states and ceca microorganisms in ducks is largely unclear. The current study used Nonghua ducks to estimate the effects of rearing systems on the intestines by evaluating differences in intestinal growth indices and cecal microorganisms between ducks in the floor-rearing system (FRS) and net-rearing system (NRS). RESULTS: The values of relative weight (RW), relative length (RL) and RW/RL of the duodenum, jejunum, ileum and ceca in the FRS were significantly higher than those in the NRS during weeks 4, 8 and 13 (p < 0.05). A total of 157 genera were identified from ducks under the two systems, and the dominant microorganisms in both treatments were Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria at the phylum level. The distribution of microorganisms in the ceca of the two treatments showed significant separation during the three time periods, and the value of the Simpson index in the FRS was significantly higher than that in the NRS at 13 weeks (p < 0.05). Five differential microorganisms and 25 differential metabolic pathways were found in the ceca at week 4, seven differential microorganisms and 25 differential metabolic pathways were found in the ceca at week 8, and four differential microorganisms and two differential metabolic pathways were found in the ceca at week 13. CONCLUSIONS: The rearing system influences duck intestinal development and microorganisms. The FRS group had higher intestinal RL, RW and RW/RL and obviously separated ceca microorganisms compared to those of the NRS group. The differential metabolic pathways of cecal microorganisms decreased with increasing age, and the abundance of translation pathways was higher in the NRS group at week 13, while cofactor and vitamin metabolism were more abundant in the FRS group.


Assuntos
Ceco , Patos , Animais , Bactérias , Ceco/microbiologia , Patos/microbiologia , Íleo/microbiologia , Intestinos
6.
Exp Cell Res ; 407(2): 112833, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536390

RESUMO

The yield and quality of the skeletal muscle are important economic traits in livestock and poultry production. The musculoskeletal embryonic nuclear protein 1 (MUSTN1) gene has been shown to be associated with embryonic development, postnatal growth, bone and skeletal muscle regeneration; however, its function in the skeletal muscle development of chicken remains unclear. Therefore, in this study, we observed that the expression level of MUSTN1 increased in conjunction with the proliferation of chicken skeletal muscle satellite cells (SMSCs). Knockdown of MUSTN1 in SMSCs downregulated the expression of cell proliferation genes as Pax7, CDK-2 and differentiation-relate genes including MyoD, MyoG, MyHC and MyH1B, whereas it upregulates the expression of cell apoptosis gene (Caspase-3) (P < 0.05). However, the combined analysis of CCK-8 and EdU showed that the cell vitality and EdU-positive cells of the si-MUSTN1 transfected group were significantly lower than those of the negative siRNA group (P < 0.05). In addition, the knockdown of MUSTN1 significantly increased the cell population in the G0/G1 phase and significantly decreased the cell population in the G2/M phase (P < 0.05), whereas the overexpression of MUSTN1 showed opposite effect. Taken together, our findings indicates that MUSTN1 is an important molecular factor that is responsible for regulating muscle growth and development in chickens, particularly, proliferation and differentiation of SMSCs.


Assuntos
Apoptose , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular , Proteínas Nucleares/metabolismo , Células Satélites de Músculo Esquelético/citologia , Animais , Galinhas , MicroRNAs , Proteínas Nucleares/genética , Células Satélites de Músculo Esquelético/metabolismo
7.
Ecotoxicol Environ Saf ; 242: 113924, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908532

RESUMO

Thiram pollution is one of the main causes of tibial dyschondroplasia (TD) induced by feed sources. Several studies have speculated that miRNA, circRNA and lncRNA may have significant impact on the development of TD, however, the specific mRNAs and noncoding RNAs and their respective regulatory mechanisms and functions in the development of TD have not been explored. Therefore, in this present study, we screened the differentially expressed mRNA, miRNA, circRNA and lncRNA by whole-transcriptome sequencing (RNA-seq) and differentially expressed genes (DEGs) enrichment, as well as constructed the interaction network among the mRNA-miRNA, mRNA-lncRNA and mRNA-miRNA-circRNA. The sequencing results were verified by fluorescence real-time quantitative PCR (RT-qPCR). The results obtained in this study, revealed that the cells were atrophied and disordered in the TD group, and the expression of BMP6, TGF-ß and VEGF were significantly reduced. A total of 141 mRNAs, 10 miRNAs, 23 lncRNAs and 35 circRNAs of DEGs were obtained (p<0.05) Theses DEGs were enriched in the adhere junction and insulin signaling pathways. In addition, the mRNA-miRNA-circRNA network suggested that several pivotal ceRNA showed a regulatory relationship between the transcripts with miRNA, circRNA or lncRNA. Taken together, the results in the present study, represent an insight for further functional research on the ceRNA regulatory mechanism of TD in broilers.


Assuntos
MicroRNAs , Osteocondrodisplasias , RNA Longo não Codificante , Animais , Galinhas/genética , Galinhas/metabolismo , Redes Reguladoras de Genes , MicroRNAs/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , RNA Circular , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tiram
8.
BMC Genomics ; 20(1): 372, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088359

RESUMO

BACKGROUND: Dysregulation of adipogenesis causes metabolic diseases, like obesity and fatty liver. Migratory birds such as geese have a high tolerance of massive energy intake and exhibit little pathological development. Domesticated goose breeds, derivatives of the wild greyleg goose (Anser anser) or swan goose (Anser cygnoides), have high tolerance of energy intake resembling their ancestor species. Thus, goose is potentially a model species to study mechanisms associated with adipogenesis. RESULTS: Phenotypically, goose liver exhibited higher fat accumulation than adipose tissues during fattening (liver increased by 3.35 fold than 1.65 fold in adipose), showing a priority of fat accumulation in liver. We found the number of differentially expressed genes in liver (13.97%) was nearly twice the number of that in adipose (6.60%). These differentially expressed genes in liver function in several important lipid metabolism pathways, immune response, regulation of cancer, while in adipose, terms closely related to protein binding, gluconeogenesis were enriched. Typically, genes like MDH2 and SCD, which have key roles in glycolysis and fatty acids metabolism, had higher fold change in liver than in adipose tissues. Three hundred two differentially expressed long noncoding RNAs involved in regulation of metabolism in liver were also identified. For example, lncRNA XLOC_292762, which was 5.7 kb downstream of FERMT2, a gene involved phosphatidylinositol-3,4,5-trisphosphate binding, was significantly down-regulated after the high-intake feeding period. Further investigation of documented obesity-related orthologous genes in goose suggested that understanding the evolutionary split from mammals in adipogenesis will make goose fatty liver a better resource for future research. CONCLUSIONS: Our research reveals that goose uses liver as the major tissue to regulate a distinct lipid synthesis and degradation flux and the dynamic expression network analyses showed numerous layers of positive responses to both massive energy intake and possible pathological development. Our results offer insights into goose adipogenesis and provide a new perspective for research in human metabolic dysregulation.


Assuntos
Tecido Adiposo/química , Fígado Gorduroso/veterinária , Gansos/genética , Perfilação da Expressão Gênica/veterinária , Fígado/química , Adipogenia , Animais , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/veterinária , Metabolismo Energético , Evolução Molecular , Fígado Gorduroso/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Gluconeogênese , Metabolismo dos Lipídeos , Masculino , RNA Longo não Codificante/genética
9.
Mol Cell Biochem ; 386(1-2): 211-22, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24126784

RESUMO

The Pax3 gene has been proven to play a crucial role in determining myogenic progenitor cell fate during embryonic myogenesis; however, the molecular role of Pax3 in myoblast development during later stages of myogenesis is unknown. We hypothesized that Pax3 would function in myoblast proliferation and differentiation; therefore, we employed three short hairpin RNAs (shRNAs) (shRNA1, shRNA2, and shRNA3) that target Pax3 to characterize the function of Pax3 in duck myoblast development. The mRNA and protein expression levels of Pax3 in duck myoblasts were detected using real-time PCR and Western blotting. Cell proliferation was assessed using the MTT and BrdU assays, while cell differentiation was assayed using immunofluorescence labeling with a MyoG antibody. Additionally, folic acid (FA), which is a rescue tool, was added into the medium of duck myoblasts to indirectly examine the function of Pax3 on duck myoblast proliferation and differentiation. The results revealed that one of the shRNA vectors, shRNA1, could significantly and stably reduce the expression of Pax3 (P < 0.05). Silencing Pax3 by shRNA1 significantly reduced the proliferation and differentiation of duck myoblasts (P < 0.05) due to downregulated expression of myogenic regulator factors. These trends could be rescued by adding FA; and Pax7, a paralog gene of Pax3, was involved in those processes. Overall, Pax3 had a positive function in duck myoblast proliferation and differentiation by modulating the expression of myogenic regulation factors, and shRNA targeting of Pax3 might be a new approach for understanding the function of Pax3 in the development of diverse tissues.


Assuntos
Diferenciação Celular/genética , Proliferação de Células , Inativação Gênica , Mioblastos/citologia , Fatores de Transcrição Box Pareados/genética , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , Patos , Imunofluorescência , Plasmídeos , Reação em Cadeia da Polimerase em Tempo Real
10.
Phys Chem Chem Phys ; 16(46): 25330-6, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25336424

RESUMO

Higher operation temperatures benefit H2 permeability and selectivity of metal membranes and they are interesting for e.g. water gas shift and steam reforming in membrane reactors. Hence the behaviour of PdAg-ceramic composite membranes has been investigated between 823 K and 923 K. The H2 flux of membranes with less than 10 µm thick alloy layers decreased continuously with time during operation under H2 at 873 K and above. This was accompanied by a steady increase of the activation energy for H2 permeation and the growth of Ag-depleted crystallites on the membrane surface. All phenomena could be reversed through annealing under N2 at 923 K. The textural and permeability changes are consistent with a segregation mechanism starting with metal sublimation from hydrogenated PdAg layers and subsequent metal resublimation. This implies an enhancement of the yet unknown metal activities in PdAg hydride phases over metallic PdAg alloys. Ramifications for application of thin-layered, supported PdAg membranes for H2 separation above 823 K are discussed.

11.
Poult Sci ; 103(4): 103534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401226

RESUMO

The poultry skeletal system serves multiple functions, not only providing structural integrity but also maintaining the balance of essential minerals such as calcium and phosphorus. However, in recent years, the consideration of skeletal traits has been overlooked in the selective breeding of broilers, resulting in an inadequate adaptation of the skeletal system to cope with the rapid increase in body weight. Consequently, this leads to lameness and bone diseases such as tibial dyschondroplasia (TD), which significantly impact the production performance of broilers. Accumulating evidence has shown that microRNAs (miRNA) play a crucial role in the differentiation, formation, and disease of cartilage. However, the miRNA-mediated molecular mechanism underlying chicken TD formation is still poorly understood. The objective of this study was to investigate the biological function and regulatory mechanism of miRNA in chicken TD formation. Based on transcriptome sequencing of tibial cartilage in the healthy group and TD group, miR-206a-3p was found to be highly expressed in TD cartilage. The function of miR-206a-3p was explored through the transfection test of miR-206a-3p mimics and miR-206a-3p inhibitor. In this study, we utilized qRT-PCR, CCK-8, EdU, western blot, and flow cytometry to detect the proliferation, differentiation, and apoptosis of chondrocytes. The results revealed that miR-206a-3p suppressed the proliferation and differentiation of TD chondrocytes while promoting their programmed cell death. Furthermore, through biosynthesis and dual luciferase assays, it was determined that BMP6 was the direct target gene of miR-206a-3p. This finding was further supported by rescue experiments which confirmed the involvement of BMP6 in the regulatory pathway governed by miR-206a-3p. Our results suggest that miR-206a-3p can inhibits the proliferation and differentiation promote apoptosis through the target gene BMP-6 and suppressing the Smad2/3 signaling pathway in chicken TD chondrocytes.


Assuntos
MicroRNAs , Osteocondrodisplasias , Animais , Condrócitos/fisiologia , Galinhas/genética , Galinhas/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Proteína Morfogenética Óssea 6/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Apoptose
12.
Front Vet Sci ; 11: 1122904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348107

RESUMO

To comprehensively provide insight into goose fatty liver formation, we performed an integrative analysis of the liver transcriptome, lipidome, and amino acid metabolome, as well as peripheral adipose tissue transcriptome analysis using samples collected from the overfed geese and normally fed geese. Transcriptome analysis showed that liver metabolism pathways were mainly enriched in glucolipid metabolism, amino acid metabolism, inflammation response, and cell cycle; peripheral adipose tissue and the liver cooperatively regulated liver lipid accumulation during overfeeding. Liver lipidome patterns obviously changed after overfeeding, and 157 different lipids were yielded. In the liver amino acid metabolome, the level of Lys increased after overfeeding. In summary, this is the first study describing goose fatty liver formation from an integrative analysis of transcriptome, lipidome, and amino acid metabolome, which will provide a whole new dimension to understanding the mechanism of goose fatty liver formation.

13.
J Hazard Mater ; 465: 133071, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38008051

RESUMO

Thiram, an agricultural insecticide, has been demonstrated to induce tibial dyschondroplasia (TD) in avian species. Circular RNA (circRNAs), a novel class of functional biological macromolecules characterized by their distinct circular structure, play crucial roles in various biological processes and diseases. Nevertheless, the precise regulatory mechanism underlying non-coding RNA involvement in thiram-induced broiler tibial chondrodysplasia remains elusive. In this study, we established a broiler model of thiram exposure for 10 days to assess TD and obtain a ceRNA network by RNA sequencing. By analyzing the differentially expressed circRNAs network, we id entify that circ_003084 was significantly upregulated in TD cartilage. Elevated circ_003084 inhibited TD chondrocytes proliferation and differentiation in vitro but promote apoptosis. Mechanistically, circ_003084 competitively binds to miR-130c-5p and prevents miR-130c-5p to decrease the level of BMPR1A, which upregulates the expression of apoptosis genes Caspase 3, Caspase 9, Bax and Bcl2, and finally facilitates cell apoptosis. Taken together, these findings imply that circ_003084/miR-130c-5p/BMPR1A interaction regulated TD chicken chondrocyte proliferation, apoptosis, and differentiation. This is the first work to reveal the mechanism of regulation of circRNA-related ceRNA on thiram-induced TD, offering a key reference for environmental toxicology.


Assuntos
Fenômenos Biológicos , MicroRNAs , Osteocondrodisplasias , Animais , Tiram , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Galinhas , Condrócitos , RNA Circular/farmacologia , MicroRNAs/genética , Proliferação de Células
14.
Poult Sci ; 102(3): 102428, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36586388

RESUMO

Our previous study described the mechanism of goose fatty liver formation from cell culture and transcriptome. However, how lipidome of goose liver response to overfeeding is unclear. In this study, we used the same batch of geese (control group and corn flour overfeeding group) to explore the lipidome changes and underlying metabolic mechanisms of goose fatty liver formation. Liquid chromatography-mass spectrometry (LC-MS) was provided to lipidome detection. Liver lipidomics profiles analysis was performed by principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), different lipids were identified and annotated, and the enriched metabolic pathways were showed. The results of PCA, PLS-DA, and OPLS-DA displayed a clear separation and discrimination between control group and corn flour overfeeding group. Two hundred and fifty-one different lipids were yielded, which were involved in triglyceride (TG), diglyceride (DG), phosphatidic acids (PA), phosphatidylinositols (PI), phosphatidylethanolamines (PE), phosphatidylcholines (PC), lyso-phosphatidylcholines (LPC), monogalactosylmonoacylglycerol (MGMG), sphingolipids (SM), ceramides (Cer), and hexaglycosylceramides (Hex1Cer). Different lipids were enriched in glycerophospholipid metabolism, glycerolipid metabolism, phosphatidylinositol signaling system, inositol phosphate metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis and sphingolipid metabolism. In conclusion, this is the first report describing the goose fatty liver formation from lipidomics, this study might provide some insights into the underlying glucolipid metabolism disorders in the process of fatty liver formation.


Assuntos
Fígado Gorduroso , Gansos , Animais , Gansos/metabolismo , Lipidômica , Galinhas/metabolismo , Fígado Gorduroso/veterinária , Fígado Gorduroso/metabolismo , Triglicerídeos/metabolismo , Fosfatidilcolinas
15.
Poult Sci ; 102(2): 102341, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36481710

RESUMO

Egg weight is an important indicator of egg phenotypic traits, which directly affects the economic benefits of the poultry industry. In the present research, laying ducks were classified into high egg weight (HEW) and light egg weight (LEW) groups. To reveal the underlying mechanism that may be responsible for the egg weight difference, the integrated analysis of transcriptomes and serum metabolomics was performed between the two groups. The results showed extremely significant differences (P < 0.01) in the total egg weight at 300 d, and average egg weight between the HEW and LEW groups. 733, 591, 82, and 74 differentially expressed genes (DEGs) were identified in the liver, magnum, F1, and F5 (hierarchical follicles) follicle membrane, respectively. The candidate genes were screened further from the perspective of forming an egg. In terms of egg yolk formation, the functional analysis revealed fatty acid metabolism-related pathways account for 36% of the liver's top pathways, including fatty acid biosynthesis, folate biosynthesis, fatty acid metabolism, and glycerol lipid metabolism pathways. FASN gene was identified as the key candidate gene by comprehensive analysis of gene expression and protein-protein interaction (PPI) network. In the follicle membrane, the DEGs were mainly enriched in protein processing in the endoplasmic reticulum, and MAPK signaling pathway, and HSPA2, HSPA8, BAG3 genes were identified as crucial candidate genes. In terms of egg white formation, the functional analysis revealed protein metabolism-related pathways account for 40% of the magnum's top pathways, which includes protein processing in the endoplasmic reticulum pathway. HSP90AA1 and HSPA8 genes were identified as key candidate genes. In addition, the integrated transcriptomic and metabolomic analysis showed that arginine and proline metabolism pathways could contribute to differences in egg weight. Thus, we speculated that the potential candidate genes, regulatory pathways, and metabolic biomarkers mentioned above might be responsible for the egg weight difference. These findings might provide a theoretical basis for improving the egg weight of ducks.


Assuntos
Patos , Transcriptoma , Animais , Patos/genética , Patos/metabolismo , Galinhas/genética , Perfilação da Expressão Gênica/veterinária , Metabolômica , Ácidos Graxos/metabolismo
16.
Front Microbiol ; 14: 1041072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760506

RESUMO

In order to investigate the effects of dietary probiotics supplementation on laying performance, egg quality, serum hormone levels, immunity, antioxidant, and gut microbiota of layers at different laying stages, a total of 168 Tianfu green shell laying hens (28-day-old) were randomly divided into 2 treatments: a non-supplemented control diet (NC), and diet supplemented with 10 g/kg of probiotics, respectively. Each treatment had 6 replicates with 14 hens per replicate. The feeding trial lasted for 54 weeks. The results showed that the supplementation of probiotics significantly increased the average egg weight, improved egg quality (p < 0.05) and ovarian development. Meanwhile, probiotics increased the serum hormone levels of E2 and FSH, and antioxidant indices T-AOC and T-SOD (p < 0.05) of laying hens at different laying stages (p < 0.05), decreased the expression of proinflammatory factors including IL-1, IL-6 and TNF-α (p < 0.05). Furthermore, using 16S rRNA sequencing, we observed that the addition of probiotics increased the distribution of Firmicutes, Bacteroidota and Synergistota at early laying period. Meanwhile, Bacteroidota, Actinobacteriota, Verrucomicrobiota and Deferribacterota showed an increasing trend at the peak of egg production. The relative abundance of Firmicutes, Desulfobacterota and Actinobacteriota were significantly increased at the late laying period. Moreover, PICRUSt2 and BugBase analysis revealed that at the late laying period, the probiotics supplementation not only enriched many significant gene clusters of the metabolism of terpenoids and polyketide, genetic information processing, enzyme families, translation, transcription, replication and repair, and nucleotide metabolism, but also decreased the proportion of potential pathogenic bacteria. To sum up, these data show that the addition of probiotics not only improves the performance, egg quality, ovarian development and immune function of laying hens at different laying period, but also improves the gut microbiota of layers, thus enhances production efficiency.

17.
J Cell Physiol ; 227(4): 1465-75, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21618537

RESUMO

To investigate reasons for the muscle increase observed when eggs are treated by IGF-1 and whether or not satellite cell activation is specific to different types of myofibers, duck eggs were administrated with IGF-1. After injection, during the neonatal stages, the duck breast muscle and leg muscle were isolated for analysis. The muscle weight, muscle fiber diameter (MFD), cross-sectional area (CSA), the number of myofibers per unit area (MFN) and frequency of satellite cell activation and mitosis at the embryo stage of 27 days (27E) and the postnatal stage of 2 days after hatching (P2D) were determined. In addition, expression of two important myogenic transcription factors MyoD and Myf5 were detected and compared in the two types of muscle tissues. Results indicated that IGF-1 administration increased the duck body weight, MFD, CSA, MFN, and quantity of activated satellite cells and mitotic nuclei in the two types of muscle tissues. The MyoD and Myf5 expressed at a higher level in IGF-1-treated muscle. IGF-1 stimulated muscle weight growth more in the leg muscle than in the breast muscle. These results indicate that in ovo feeding of IGF-1 can stimulate duck growth and, especially, lead to increased muscle hypertrophy. These increases appear to be mainly dependent on the activation of satellite cells, some of which proliferate and fuse to the myofiber, enabling increased muscle mass. IGF-1 can indirectly affect satellite cells by regulating the expression of two important myogenic transcription factors, MyoD and Myf5, which help activate satellite cells.


Assuntos
Patos/embriologia , Patos/crescimento & desenvolvimento , Fator de Crescimento Insulin-Like I/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Patos/genética , Patos/metabolismo , Hipertrofia , Mitose/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/embriologia , Músculo Esquelético/patologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Proteínas Recombinantes/administração & dosagem , Células Satélites de Músculo Esquelético/patologia
18.
Mol Biol Rep ; 39(8): 8363-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22722987

RESUMO

POU1F1 is an essential factor that regulates the development and reproduction of animal. The objective of the current research was to screen for polymorphism, expression of POU1F1 and their association with carcass quality traits. A total of 126 Erlang mountainous chickens from two strains (SD02 and SD03) were employed for testing. Seventeen single nucleotide polymorphisms (SNPs) were detected, but only two SNPs (g.96217999 T > C and g.96219442 C > T) were associated with carcass quality traits. In SD03 chicken, g.96217999 T > C genotypes were significantly associated with body weight (BW), carcass weight (CW), eviscerated weight (EW), and semi-eviscerated weight (SEW; P < 0.05), and was highly significantly associated with breast muscle weight (BMW) and abdominal fat weight (AW; P < 0.01). g.96219442 C > T was significantly associated with BW, EW, SEW (P < 0.05). However, these two SNPs were not significantly associated with any carcass traits in SD02 chicken. Diplotypes showed that in SD03 chicken, the haplotype [C: C] was the most favorable haplotype because it was associated with higher BW, CW, SEW, EW, BMW, and AW (P < 0.05). On the contrary, haplotype [T: T] was associated with lower carcass quality traits (P < 0.01). In addition, qRT-PCR revealed that at 13 weeks, the POU1F1 mRNA expression was significantly higher in breast muscle of cock compared to that of hens (P < 0.05), whereas there was no significant correlation between POU1F1 expression and carcass traits. These results suggested that POU1F1 could be a potential candidate gene for carcass traits in chicken.


Assuntos
Galinhas/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Fator de Transcrição Pit-1/genética , Animais , Feminino , Expressão Gênica , Estudos de Associação Genética , Genótipo , Masculino , Músculo Esquelético/metabolismo , Fenótipo
19.
Front Nutr ; 9: 1052600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704791

RESUMO

To further explore the fructose pro-steatosis mechanism, we performed an integrative analysis of liver transcriptome and lipidome as well as peripheral adipose tissues transcriptome analysis using samples collected from geese overfed with maize flour (control group) and geese overfed with maize flour supplemented with 10% fructose (treatment group). Overfeeding period of the treatment group was significantly shorter than that of the control group (p < 0.05). Dietary supplementation with 10% fructose induced more severe steatosis in goose liver. Compared with the control group, the treatment group had lower in ceramide levels (p < 0.05). The key differentially expressed genes (DEGs) (control group vs. treatment group) involved in liver fatty acid biosynthesis and steroid biosynthesis were downregulated. The conjoint analysis between DEGs and different lipids showed that fatty acid biosynthesis and steroid biosynthesis were the highest impact score pathways. In conclusion, fructose expedites goose liver lipid accumulation maximization during overfeeding.

20.
Poult Sci ; 101(11): 102149, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209604

RESUMO

Previous research in our lab showed that 10% glucose, 10% fructose, and 10% sucrose can induce lipid deposition in goose fatty liver formation process more efficiently. However, whether the overfeeding diet supplement with sugar can affect the meat quality is unclear. The aim of this research was to estimate the meat quality of geese overfed with overfeeding diet adding with different types of sugar. The results indicated there were no significant differences in the diameter of muscle fiber, the muscle fiber density, pH0, pH24, the meat color, the cooking loss, the drip loss, the shear force and the dry matter in breast muscle and thigh muscle between corn flour groups and three sugars groups (P > 0.05). The crude fat content of breast muscle in fructose group was significantly higher than that in sucrose group (P < 0.05); the inosinic acid content of leg muscle in fructose group was significantly higher than that in the sucrose group (P < 0.05); the ratios of essential amino acids to total amino acids (EAA/TAA) in the breast muscle of maize flour group, fructose group, sucrose group and glucose group were 42%, 35%, 32% or 34%;57%, 64%, 64%, and 62%, respectively; the ratios of essential amino acids to total amino acids in leg muscle of maize flour group, fructose group, sucrose group and glucose group were 31%, 33%, 35%, and 34%, respectively. The contents of C16:1 and C18:1 n-9c in breast muscle in fructose group were significantly higher than that in sucrose group (P < 0.05). Compared with maize flour group, the contents of C18:0 and C20:0 were lower in leg muscle of sugar group (P < 0.05). Compared with the maize flour group, the activities of hydrogen peroxide (H2O2) and glutathione peroxidase (GSH-PX) in breast muscle were higher than those of sucrose group (P < 0.05), the total antioxidant capacity (T-AOC) levels in breast muscle was higher than that of fructose group and sucrose group (P < 0.05). Cluster analysis and principal component analysis (PCA) showed that there was no difference in meat quality between maize flour and sugar group. In conclusion, the overfeeding with maize flour supplement with 10% sugar had no evident influence on the meat quality.


Assuntos
Peróxido de Hidrogênio , Açúcares , Animais , Galinhas , Carne/análise , Gansos/fisiologia , Frutose , Glucose , Aminoácidos/análise , Aminoácidos Essenciais , Sacarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA