Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant J ; 119(4): 2001-2020, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943614

RESUMO

While it is known that increased dissolved CO2 concentrations and rising sea surface temperature (ocean warming) can act interactively on marine phytoplankton, the ultimate molecular mechanisms underlying this interaction on a long-term evolutionary scale are relatively unexplored. Here, we performed transcriptomics and quantitative metabolomics analyses, along with a physiological trait analysis, on the marine diatom Thalassiosira weissflogii adapted for approximately 3.5 years to warming and/or high CO2 conditions. We show that long-term warming has more pronounced impacts than elevated CO2 on gene expression, resulting in a greater number of differentially expressed genes (DEGs). The largest number of DEGs was observed in populations adapted to warming + high CO2, indicating a potential synergistic interaction between these factors. We further identified the metabolic pathways in which the DEGs function and the metabolites with significantly changed abundances. We found that ribosome biosynthesis-related pathways were upregulated to meet the increased material and energy demands after warming or warming in combination with high CO2. This resulted in the upregulation of energy metabolism pathways such as glycolysis, photorespiration, the tricarboxylic acid cycle, and the oxidative pentose phosphate pathway, as well as the associated metabolites. These metabolic changes help compensate for reduced photochemical efficiency and photosynthesis. Our study emphasizes that the upregulation of ribosome biosynthesis plays an essential role in facilitating the adaptation of phytoplankton to global ocean changes and elucidates the interactive effects of warming and high CO2 on the adaptation of marine phytoplankton in the context of global change.


Assuntos
Dióxido de Carbono , Diatomáceas , Diatomáceas/metabolismo , Diatomáceas/genética , Diatomáceas/fisiologia , Dióxido de Carbono/metabolismo , Fitoplâncton/genética , Fitoplâncton/fisiologia , Fitoplâncton/metabolismo , Adaptação Fisiológica , Transcriptoma , Aquecimento Global , Fotossíntese , Metabolômica
2.
J Transl Med ; 22(1): 437, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720345

RESUMO

BACKGROUND: Biological-derived hydroxyapatite is widely used as a bone substitute for addressing bone defects, but its limited osteoconductive properties necessitate further improvement. The osteo-immunomodulatory properties hold crucial promise in maintaining bone homeostasis, and precise modulation of macrophage polarization is essential in this process. Metabolism serves as a guiding force for immunity, and fluoride modification represents a promising strategy for modulating the osteoimmunological environment by regulating immunometabolism. In this context, we synthesized fluorinated porcine hydroxyapatite (FPHA), and has demonstrated its enhanced biological properties and osteogenic capacity. However, it remains unknown whether and how FPHA affects the immune microenvironment of the bone defects. METHODS: FPHA was synthesized and its composition and structural properties were confirmed. Macrophages were cultured with FPHA extract to investigate the effects of FPHA on their polarization and the related osteo-immune microenvironment. Furthermore, total RNA of these macrophages was extracted, and RNA-seq analysis was performed to explore the underlying mechanisms associated with the observed changes in macrophages. The metabolic states were evaluated with a Seahorse analyzer. Additionally, immunohistochemical staining was performed to evaluate the macrophages response after implantation of the novel bone substitutes in critical size calvarial defects in SD rats. RESULTS: The incorporation of fluoride ions in FPHA was validated. FPHA promoted macrophage proliferation and enhanced the expression of M2 markers while suppressing the expression of M1 markers. Additionally, FPHA inhibited the expression of inflammatory factors and upregulated the expression of osteogenic factors, thereby enhancing the osteogenic differentiation capacity of the rBMSCs. RNA-seq analysis suggested that the polarization-regulating function of FPHA may be related to changes in cellular metabolism. Further experiments confirmed that FPHA enhanced mitochondrial function and promoted the metabolic shift of macrophages from glycolysis to oxidative phosphorylation. Moreover, in vivo experiments validated the above results in the calvarial defect model in SD rats. CONCLUSION: In summary, our study reveals that FPHA induces a metabolic shift in macrophages from glycolysis to oxidative phosphorylation. This shift leads to an increased tendency toward M2 polarization in macrophages, consequently creating a favorable osteo-immune microenvironment. These findings provide valuable insights into the impact of incorporating an appropriate concentration of fluoride on immunometabolism and macrophage mitochondrial function, which have important implications for the development of fluoride-modified immunometabolism-based bone regenerative biomaterials and the clinical application of FPHA or other fluoride-containing materials.


Assuntos
Durapatita , Glicólise , Macrófagos , Fosforilação Oxidativa , Ratos Sprague-Dawley , Animais , Durapatita/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Ratos , Suínos , Proliferação de Células/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Crânio/patologia , Crânio/efeitos dos fármacos , Camundongos , Microambiente Celular/efeitos dos fármacos , Células RAW 264.7 , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos
3.
Mar Environ Res ; 201: 106707, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39205357

RESUMO

Ocean acidification (OA) interacts with multiple environmental drivers, such as temperature, nutrients, and ultraviolet radiation (UVR), posing a threat to marine primary producers. In this study, we conducted a quantitative meta-analysis of 1001 experimental assessments from 68 studies to examine the combined effects of OA and multiple environmental drivers (e.g., light, nutrient) on the biochemical compositions of marine primary producers. The results revealed significant positive effects of each environmental driver and their interactions with OA according to Hedge's d analysis. The results revealed significant positive effects of multiple environmental drivers and their interactions with OA. Additive effects dominated (71%), with smaller proportions of antagonistic (20%) and synergistic interactions (9%). The antagonistic interactions, although fewer, had a substantial impact, causing OA and other environmental drivers to interact antagonistically. Significant differences were observed among taxonomic groups: haptophytes and rhodophytes were negatively affected, while bacillariophytes were positively affected by OA. Our findings also indicated that the interactions between OA and multiple environmental drivers varied depending on specific type of the environmental driver, suggesting a modulating role of OA on the biochemical compositions of marine primary producers in response to global change. In summary, our study elucidates the complex interactions between OA and multiple environmental drivers on marine primary producers, highlighting the varied impacts on biochemical compositions and elemental stoichiometry.


Assuntos
Oceanos e Mares , Água do Mar , Água do Mar/química , Concentração de Íons de Hidrogênio , Monitoramento Ambiental , Organismos Aquáticos , Mudança Climática , Acidificação dos Oceanos
4.
J Colloid Interface Sci ; 629(Pt A): 455-466, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36088691

RESUMO

Currently, two-dimensional/two-dimensional (2D/2D) van der Waals heterojunctions, as novel and excellent candidates for photocatalysts, have attracted significant attention because of their fundamentally improved interfacial charge separation/transfer and massive reactive centers. Herein, novel 2D/2D Ta3N5-nanosheet/ReS2-nanosheet van der Waals heterojunction photocatalysts are rationally designed through a method combining template-assisted and solution-adsorption processes. The resultant heterojunctions exhibit enhanced interfacial charge transfer, boosted light absorption and significantly increased reaction sites for hydrogen evolution. Correspondingly, they deliver a high photocatalytic hydrogen production activity of 615 µmol g-1 h-1, which is ∼3 and ∼12 times greater than that of bare Ta3N5 nanosheets and ReS2 nanosheets, respectively, and superior to those in the most recent reports about photocatalytic water splitting on Ta3N5 material, implying their potential applications as advanced catalysts for hydrogen evolution.

5.
Mar Environ Res ; 186: 105929, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36863076

RESUMO

Multifaceted changes in marine environments as a result of anthropogenic activities are likely to have a compounding impact on the physiology of marine phytoplankton. Most studies on the combined effects of rising pCO2, sea surface temperature, and UVB radiation on marine phytoplankton were only conducted in the short-term, which does not allow to test the adaptive capacity of phytoplankton and associated potential trade-offs. Here, we investigated populations of the diatom Phaeodactylum tricornutum that were long-term (∼3.5 years, ∼3000 generations) adapted to elevated CO2 and/or elevated temperatures, and their physiological responses to short-term (∼2 weeks) exposure of two levels of ultraviolet-B (UVB) radiation. Our results showed that while elevated UVB radiation showed predominantly negative effects on the physiological performance of P. tricornutum regardless of adaptation regimes. Elevated temperature alleviated these effects on most of the measured physiological parameters (e.g., photosynthesis). We also found that elevated CO2 can modulate these antagonistic interactions, and conclude that long-term adaptation to sea surface warming and rising CO2 may alter this diatom's sensitivity to elevated UVB radiation in the environment. Our study provides new insights into marine phytoplankton's long-term responses to the interplay of multiple environmental changes driven by climate change.


Assuntos
Diatomáceas , Temperatura , Dióxido de Carbono , Fitoplâncton/fisiologia , Aclimatação
6.
ACS Appl Mater Interfaces ; 15(50): 58166-58180, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079631

RESUMO

Calcium phosphate-based biomineralized biomaterials have broad application prospects. However, the immune response and foreign body reactions elicited by biomineralized materials have drawn substantial attention recently, contrary to the immune microenvironment optimization concept. Therefore, it is important to clarify the immunomodulation properties of biomineralized materials. Herein, we prepared the biomineralized collagen matrix (BCM) and screened the key immunomodulation factor carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) nanocomplex. The immunomodulation effect of the BCM was investigated in vitro and in vivo. The BCM triggered evident inflammatory responses and cascade foreign body reactions by releasing the CMC/ACP nanocomplex, which activated the potential TLR4-MAPK/NF-κB pathway, compromising the collagen matrix biocompatibility. By contrast, blocking the CMC/ACP nanocomplex release via the blood assimilation process of the BCM mitigated the inflammation and foreign body reactions, enhancing biocompatibility. Hence, the immunomodulation of the BCM was orchestrated by the balance between the CMC/ACP nanocomplex and the blood assimilation process. Controlling the release of the CMC/ACP nanocomplex to accord the biological effects of ACP with the temporal regenerative demands is key to developing advanced biomineralized materials.


Assuntos
Colágeno , Corpos Estranhos , Humanos , Materiais Biocompatíveis/farmacologia , NF-kappa B , Imunidade , Fosfatos de Cálcio
7.
Mar Environ Res ; 188: 106008, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37121174

RESUMO

Understanding the responses of multiple traits in phytoplankton, and identifying interspecific variabilities to thermal changes is crucial for predicting the impacts of ocean warming on phytoplankton distributions and community structures in future scenarios. Here, we applied a trait-based approach by examining the patterns in multi-traits variations (eight traits) and interspecific variabilities in five phytoplankton species (two diatoms, three dinoflagellates) in response to a wide range of ecologically relevant temperatures (14-30 °C). Our results show large inter-traits and interspecific variabilities of thermal reaction norms in all of the tested traits. We also found that the interspecific variability exceeded the variations induced by thermal changes. Constrained variations and trade-offs between traits both revealed substantial interspecific differences and shifted as the temperature changed. Our study helps to understand the species-specific response patterns of multiple traits to ocean warming and to investigate the implications of these responses in the context of global change.


Assuntos
Diatomáceas , Dinoflagellida , Fitoplâncton/fisiologia , Diatomáceas/fisiologia , Temperatura , Fenótipo , Ecossistema
8.
Aging (Albany NY) ; 14(21): 8818-8838, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347025

RESUMO

BACKGROUND: N6-methyladenosine (m6A) is the most abundant epigenetic modification. Although the dysregulation of m6A regulators has been associated with cancer progression in several studies, its relationship with cancer prognosis and clinicopathology is still controversial. Therefore, we evaluated the prognostic and clinicopathological value of m6A regulators in cancers by performing a comprehensive meta-analysis. METHODS: The PubMed, Cochrane Library, Web of Science, and Embase databases were searched up to April 2022. Hazard ratios were used to analyze the association between m6A with prognosis. We also analyze the relationship between m6A and clinicopathology using odds ratios. RESULTS: METTL3 overexpression predicted poor overall survival and disease-free survival in cancer patients (p < 0.001) such as gastric cancer (p < 0.001), esophageal squamous cell carcinoma (p < 0.001), oral squamous cell carcinoma (p = 0.002) and so on. Additionally, METTL3 overexpression was associated with poor pT stage (p < 0.001), pN stage (p < 0.001), TNM stage (p < 0.001), tumor size >5 cm (p < 0.001) and vascular invasion (p = 0.024). Conversely, METTL14 overexpression was positively associated with better OS (p < 0.001), negatively with poor pT stage (p = 0.001), pM stage (p = 0.002), pN stage (p = 0.011) and TNM stage (p < 0.001). Moreover, KIAA1429 overexpression was associated with poor OS (p = 0.001). YTHDF1 overexpression was also associated with advanced pM stage (p < 0.001) and tumor size >5 cm (p < 0.001). However, ALKBH5 overexpression was negatively associated with vascular invasion (p = 0.032). CONCLUSIONS: High expression of METTL3 predicted poor outcome. In contrast, high expression of METTL14 was associated with better outcome. Thus, we suggest that among all the m6A regulators, METTL3 and METTL14 could be potential prognostic markers in cancers.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Bucais , Humanos , Prognóstico , Metiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA