Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(3): 1354-1361, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38194439

RESUMO

A high-precision photoacoustic (PA) gas analyzer for fast dynamic measurement of ambient nitrogen dioxide (NO2) was developed. The PA analyzer used a differential PA cell combined with two mufflers to achieve rapid gas flow gas detection. A high-power laser diode (LD) with a center wavelength of 450 nm was used as the PA signal excitation source. To reduce the saturated absorption effect of NO2, ambient air was pumped into the analyzer at a flow rate of 900 sccm. Two mufflers were combined with the differential PA cell to reduce the noise caused by the airflow and pump. The parameters of the mufflers were optimized by using a finite element method. The experimental results showed that the gas flow noise was suppressed by 95%. The response time of the PAS analyzer was 34 s. The detection limits of the analyzer were 0.64 and 0.17 ppb when the integration times were 1 and 15 s, respectively. A 120 h continuous monitoring result was compared with the data from the National Environmental Monitoring Station to demonstrate the high reliability of the analyzer.

2.
Anal Chem ; 96(13): 5258-5264, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501986

RESUMO

A rapid photoacoustic (PA) exhaust gas analyzer is presented for simultaneous measurements of nitrogen dioxide (NO2) and sulfur dioxide (SO2). A laser diode (LD) emitting at 450 nm and a light-emitting diode (LED) with a peak wavelength of 275 nm operated simultaneously, producing PA signals of NO2 and SO2, respectively. The LD and LED were modulated at different frequencies of 2568 and 2570 Hz, and their emission light beams were transmitted through two resonant tubes in a differential PA cell (DPAC), respectively. A self-made dual-channel digital lock-in amplifier was used to realize the simultaneous detection of dual-frequency PA signals. Cross interference between the PA signals at the two different frequencies was reduced to 0.02% by using a lock-in amplifier. In order to achieve a rapid dynamic measurement, gas sampling was accelerated by an air pump. The use of mufflers and the differential PA detection technique significantly reduced the gas sampling noise. When the gas flow rate was 1000 sccm, the response time of the PA dual-gas analyzer was 8 and 17 s for NO2 and SO2, respectively. The minimum detection limits of NO2 and SO2 were 1.7 and 26.1 ppb when the averaging time of the system was 10 s, respectively. Due to the wide spectral bandwidth of the LED, NO2 produced an interference to the detection of SO2. The interference was reduced by the precise detection of NO2. Since the radiations of the LD and LED passed through two different PA tubes, the impact of NO2 photochemical dissociation caused by UV LED luminescence on NO2 gas detection was negligible. The sharing of the PA cell, the gas lines, and the signal processing modules significantly reduced the size and cost of the PA dual-gas analyzer.

3.
Anal Chem ; 96(6): 2543-2549, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38302445

RESUMO

A self-calibration fiber-optic photoacoustic (PA) gas analyzer based on 2f/1f wavelength modulation spectroscopy (WMS) is proposed, which utilizes gas and solid multipass absorption enhancement. The laser light is incident obliquely on the cell wall, and one end of the cell is equipped with a highly reflective mirror. The gas analyzer takes full advantage of the miniature multipass PA cell, which enhances the absorption of gas and solid simultaneously. As a result, the double absorption enhancement of 1f and 2f PA signals are realized. A dual-channel lock-in white-light interferometer based on fiber-optic PA demodulation is designed to simultaneously extract the 1f and 2f PA signals detected by the silicon cantilever. The experimental results of methane gas detection show that the minimum detection limit (MDL) of the PA gas analyzer is 20 ppb when the integration time is 60 s. Moreover, the detection error of gas concentration is within 3% when the laser power is reduced by half. The fiber-optic PA gas analyzer eliminates the influence of changes in the laser power and optical path loss, which can be used for the high-precision detection of trace gases.

4.
Opt Lett ; 48(17): 4558-4561, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656554

RESUMO

We design a photoacoustic (PA) SO2 sensor based on the coupling of a differential photoacoustic cell (DPAC) and cost-effective UV-LED, which realized the dynamic monitoring of SO2 gas at the ppb level. Aiming at the limitation of UV-LED divergence, a light source combination module with high condensing efficiency was devised based on a lens through theoretical derivation and experimental analysis. The PA signal with the optimum matching of the lens was 20-times larger than the direct coupling of the UV-LED. Due to the excellent beam collimation effect of the lens assembly, the background interference was only 1 ppm. In addition, the DPAC gathered the merits of doubling the PA signal and reducing the flow noise interference. The analysis of Allan-Werle deviation showed that the detection limit of SO2 was 1.3 ppb with the averaging time of 100 s.

5.
Sensors (Basel) ; 23(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37688100

RESUMO

A single-fiber photoacoustic (PA) sensor with a silicon cantilever beam for trace acetylene (C2H2) gas analysis was proposed. The miniature gas sensor mainly consisted of a microcantilever and a non-resonant PA cell for the real-time detection of acetylene gas. The gas diffused into the photoacoustic cell through the silicon cantilever beam gap. The volume of the PA cell in the sensor was about 14 µL. By using a 1 × 2 fiber optical coupler, a 1532.8 nm distributed feedback (DFB) laser and a white light interference demodulation module were connected to the single-fiber photoacoustic sensor. A silicon cantilever was utilized to improve the performance when detecting the PA signal. To eliminate the interference of the laser-reflected light, a part of the Fabry-Perot (F-P) interference spectrum was used for phase demodulation to achieve the highly sensitive detection of acetylene gas. The minimum detection limit (MDL) achieved was 0.2 ppm with 100 s averaging time. In addition, the calculated normalized noise equivalent absorption (NNEA) coefficient was 4.4 × 10-9 W·cm-1·Hz-1/2. The single-fiber photoacoustic sensor designed has great application prospects in the early warning of transformer faults.

6.
Sci Rep ; 13(1): 17650, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848460

RESUMO

Artificial oyster reefs provide important spawning and nursery grounds for a variety of fishes and large mobile crustaceans. Between July 2016 and May 2017, seasonal surveys of species composition and community structure were performed in the artificial oyster reef area and control area adjacent to the Luanhe River Estuary in China. During the survey year, 56 species belonging to 50 genera, 45 families, and 19 orders were recorded. The dominant economically important fish and mobile crustaceans were Hexagrammos otakii, Pholis fangi, Sebastes schlegelii, Charybdis japonica, and Oratosquilla oratoria. Resident fishes belonged to the Cynoglossidae, Paralichthyidae, Pleuronectidae, and Gobiidae families. Seasonally important fish species included Lateolabrax japonicus, Konosirus punctatus, Thryssa kammalensis, Hexagrammos agrammus, and Acanthopagrus schlegelii. The ranges of H' values among stations were 1.18-2.16, 0.65-1.75, 1.18-2.06, and 0.62-1.92 in spring, summer, autumn, and winter, respectively. The benthic organisms present in the community of artificial oyster reef areas can be classified into groups according to month and season. The abundance biomass curves showed that the oyster reef area in spring, autumn, and winter experienced low disturbance, whereas the community structure in summer was subject to large variations from external disturbance. We also found that as the age of the oyster reefs increased, the percentage of oysters in the low shell height group (< 40 mm) decreased. The oyster density was 324 ind/m2 for the reef created in 2016, 724 ind/m2 for the reef created in 2015, and 364 ind/m2 for the reef created in 2013. These findings can be used to develop suitable management strategies for the sustainable maintenance of artificial oyster reef ecosystems.


Assuntos
Braquiúros , Linguado , Ostreidae , Perciformes , Humanos , Animais , Ecossistema , Estações do Ano , Estuários , Rios , Peixes , Recifes de Corais
7.
Photoacoustics ; 33: 100560, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021295

RESUMO

An integrated near-infrared fiber-optic photoacoustic sensing demodulator was established for ultra-high sensitivity gas detection. The demodulator has capacities of interference spectrum acquisition and calculation, laser modulation control as well as digital lock-in amplification. FPGA was utilized to realize all the control and signal processing functions, which immensely improved the integration and stability of the system. The photoacoustic signal detection based on fiber-optic Fabry-Perot (F-P) acoustic sensor was realized by applying ultra-high resolution spectral demodulation technique. The detectable frequency of photoacoustic signal achieved 10 kHz. The system integrated lock-in amplification technology, which made the noise sound pressure and dynamic response range of sound pressure detection reached 3.7 µPa/√Hz @1 kHz and 142 dB, respectively. The trace C2H2 gas was tested with a multi-pass resonant photoacoustic cell. Ultra-high sensitivity gas detection was accomplished, which was based on high acoustic detection sensitivity and the matching digital lock-in amplification. The system detection limit and normalized noise equivalent absorption (NNEA) coefficient were reached 3.5 ppb and 6.7 × 10-10 cm-1WHz-1/2, respectively. The devised demodulator can be applied for long-distance gas measurement, which depends on the fact that both the near-infrared photoacoustic excitation light and the probe light employ optical fiber as transmission medium.

8.
ACS Appl Mater Interfaces ; 13(5): 6785-6794, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33507726

RESUMO

The mechanochemical reaction kinetics of sulfur with copper to form a metastable copper sulfide phase at room temperature is investigated in ultrahigh vacuum by modifying the properties of the copper during cleaning in vacuum. The measured kinetics is in agreement with a theory first proposed by Karthikeyan and Rigney that predicts that the rate depends linearly both on the contact time and on the strain-rate sensitivity of the substrate. The mechanism for this process was investigated using thin samples of copper fabricated using a focused-ion-beam and by measuring the crystal structure and elemental composition of the copper subsurface region by electron microscopy after reaction. The measured sulfur depth distributions produced by shear-induced surface-to-bulk transport were in good agreement with values calculated using rate constants that also model the reaction kinetics. Sulfur was found both in crystalline regions and also concentrated along grain boundaries, implying that formation of metastable phases is facilitated by both the presence of dislocations and by grain boundaries.

9.
Bioresour Technol ; 300: 122665, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31918303

RESUMO

Microalgae bio-oil production is related to the sustainable use of world energy in the future. In the present work, catalytic pyrolysis and liquefaction behavior of microalgae for bio-oil production were investigated. The results show that the rare earth compounds as catalysts contributed to significantly accelerating the pyrolysis of microalgae via reducing the activation energy of pyrolysis process. Ce(II)/HZSM-5 presented the optimal catalytic pyrolysis and liquefaction effects by helping cut the microalgae molecule chains. The maximum bio-oil yield amounted to 49.71 wt% at the catalyst concentration of 5 wt%. The chemical components of the Spirulina bio-oil were composed of carboxylic acids, ketones, olefins, amides, ethers, esters, and partially cyclic N-containing compounds. Although the combustion performances of the Spirulina bio-oil are worse than those of the diesel fuel, it is superior to the reported rice husk bio-oil, suggesting a promising potential application prospect.


Assuntos
Microalgas , Biocombustíveis , Catálise , Temperatura Alta , Óleos de Plantas , Polifenóis , Pirólise
10.
ACS Appl Mater Interfaces ; 9(31): 26531-26538, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28742322

RESUMO

The mechanochemical reaction between copper and dimethyl disulfide is studied under well-controlled conditions in ultrahigh vacuum (UHV). Reaction is initiated by fast S-S bond scission to form adsorbed methyl thiolate species, and the reaction kinetics are reproduced by two subsequent elementary mechanochemical reaction steps, namely a mechanochemical decomposition of methyl thiolate to deposit sulfur on the surface and evolve small, gas-phase hydrocarbons, and sliding-induced oxidation of the copper by sulfur that regenerates vacant reaction sites. The steady-state reaction kinetics are monitored in situ from the variation in the friction force as the reaction proceeds and modeled using the elementary-step reaction rate constants found for monolayer adsorbates. The analysis yields excellent agreement between the experiment and the kinetic model, as well as correctly predicting the total amount of subsurface sulfur in the film measured using Auger spectroscopy and the sulfur depth distribution measured by angle-resolved X-ray photoelectron spectroscopy.

11.
Bioresour Technol ; 156: 1-5, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24472700

RESUMO

This paper investigated a novel hydrothermal liquefaction process of Chlorella pyrenoidosa catalyzed by Ce/HZSM-5. The chemical groups and components of the residues of C. pyrenoidosa were analyzed by Fourier transform infrared spectrometry and Gas Chromatograph-Mass Spectrometer. The crystal structure and micro surface topography of C. pyrenoidosa before and after catalytic liquefaction were characterized by X-ray diffraction and Scanning electron microscopy, respectively. The experimental results showed that the catalytic cracking effects of Ce/HZSM-5 were superior to that of HZSM-5 as a liquefaction catalyst of C. pyrenoidosa. Compared with HZSM-5, Ce/HZSM-5 has a significantly enhanced Lewis acid active center, smaller particle size, larger specific surface, and highly dispersed Ce4O7 with trivalent and tetravalent cerium in the zeolite skeleton channel that accelerate the catalytic liquefaction of C. pyrenoidosa. The rare earth modified zeolite Ce/HZSM-5 exhibits good potential and a beneficial nature for the preparation of bio-oil from microalgae with high efficiency.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Cério/farmacologia , Chlorella/metabolismo , Óleos/metabolismo , Zeolitas/farmacologia , Catálise , Chlorella/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA