RESUMO
Elucidating exposure risks associated with the most widely used agrochemicals and their metabolites in celery agrosystems are vital for food safety and human health. The occurrence, distribution, dissipation and metabolism of imidacloprid (IMI), acetamiprid (ACE), thiamethoxam (THM) and difenoconazole (DIF) in celery tissues reflected by initial depositions, uptake characteristics, half-lives, concentration variations. DIF exhibited unacceptable ecological risk to soil organisms under multi-risk evaluation models, including toxicity exposure ratio, risk quotient, and BITSSD model. The joint dietary risks of target pesticides were 37.273-647.454% and 0.400-2522.016% based on deterministic and probabilistic models, with non-carcinogenic risks of 30.207-85.522% and 1.229-2524.662%, respectively. Children aged 1-6 years suffered the highest exposure, with the leaves posing higher risk than other tissues. Long-term exposure risks should be continuously assessed for ecological sustainability and human health, given the widespread usage and cumulative effects of target pesticides, especially for rural children.
RESUMO
Elaborating on the fate tendency of thifluzamide (thiazole-amide fungicide) in buckwheat based on nationwide application is vital for grain security and human health based on nationwide application. A rapid and sensitive analytical method was developed to trace thifluzamide in buckwheat matrices using an ultrahigh-performance liquid chromatography-tandem triple quadrupole mass spectrometer (UHPLC-MS/MS), with a retention time of 2.90 min and limit of quantitation (LOQ) of 0.001 mg/kg. Thifluzamide could be stably stored for 84 d in buckwheat matrices under -20 °C under dark condition. The occurrence, dissipation and terminal magnitudes of thifluzamide were reflected by the primary deposition of 0.02-0.55 mg/kg, half-lives of 12-14 d, and highest residues of 0.41 mg/kg. The long-term risks (ADI%) of thifluzamide were 37.268 %-131.658 % in registered crops, and the risks for the rural population were significantly higher than those of the urban population. The unacceptable dietary risks of thifluzamide should be continuously emphasized for children aged 2-7 with an ADI% values of 100.750 %-131.658 %. A probabilistic model was further introduced to evaluate the risk discrepancy of thifluzamide in buckwheat, showing the risks in Tartary buckwheat (Fagopyrum tararicum Gaerth) were 1.5-75.4 times than that in sweet buckwheat (Fagopyrum esculentum Moench). Despite the low risks for dietary buckwheat, the high-potential health hazards of thifluzamide should be pay more attention given the increasing applications and cumulative effects.