Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.717
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 624(7992): 672-681, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935376

RESUMO

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Animais , Humanos , Camundongos , Aminas/metabolismo , Anfetamina/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sítios de Ligação , Catecolaminas/agonistas , Catecolaminas/química , Catecolaminas/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Ligantes , Simulação de Dinâmica Molecular , Mutação , Polifarmacologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Especificidade da Espécie , Especificidade por Substrato
2.
Mol Cell ; 79(3): 521-534.e15, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32592681

RESUMO

Genome-wide mapping of chromatin interactions at high resolution remains experimentally and computationally challenging. Here we used a low-input "easy Hi-C" protocol to map the 3D genome architecture in human neurogenesis and brain tissues and also demonstrated that a rigorous Hi-C bias-correction pipeline (HiCorr) can significantly improve the sensitivity and robustness of Hi-C loop identification at sub-TAD level, especially the enhancer-promoter (E-P) interactions. We used HiCorr to compare the high-resolution maps of chromatin interactions from 10 tissue or cell types with a focus on neurogenesis and brain tissues. We found that dynamic chromatin loops are better hallmarks for cellular differentiation than compartment switching. HiCorr allowed direct observation of cell-type- and differentiation-specific E-P aggregates spanning large neighborhoods, suggesting a mechanism that stabilizes enhancer contacts during development. Interestingly, we concluded that Hi-C loop outperforms eQTL in explaining neurological GWAS results, revealing a unique value of high-resolution 3D genome maps in elucidating the disease etiology.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genoma Humano , Neurogênese/genética , Regiões Promotoras Genéticas , Adulto , Linhagem Celular , Cérebro/citologia , Cérebro/crescimento & desenvolvimento , Cérebro/metabolismo , Cromatina/ultraestrutura , Mapeamento Cromossômico , Feto , Histonas/genética , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/citologia , Neurônios/metabolismo , Lobo Temporal/citologia , Lobo Temporal/crescimento & desenvolvimento , Lobo Temporal/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299379

RESUMO

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Assuntos
Quitina , Flores , Hypocreales , Oryza , Doenças das Plantas , Oryza/microbiologia , Oryza/metabolismo , Oryza/genética , Doenças das Plantas/microbiologia , Quitina/metabolismo , Flores/microbiologia , Hypocreales/patogenicidade , Hypocreales/genética , Hypocreales/metabolismo , Transdução de Sinais , Interações Hospedeiro-Patógeno , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulência , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
4.
Proc Natl Acad Sci U S A ; 121(9): e2320657121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386704

RESUMO

To control net sodium (Na+) uptake, Arabidopsis plants utilize the plasma membrane (PM) Na+/H+ antiporter SOS1 to achieve Na+ efflux at the root and Na+ loading into the xylem, and the channel-like HKT1;1 protein that mediates the reverse flux of Na+ unloading off the xylem. Together, these opposing transport systems govern the partition of Na+ within the plant yet they must be finely co-regulated to prevent a futile cycle of xylem loading and unloading. Here, we show that the Arabidopsis SOS3 protein acts as the molecular switch governing these Na+ fluxes by favoring the recruitment of SOS1 to the PM and its subsequent activation by the SOS2/SOS3 kinase complex under salt stress, while commanding HKT1;1 protein degradation upon acute sodic stress. SOS3 achieves this role by direct and SOS2-independent binding to previously unrecognized functional domains of SOS1 and HKT1;1. These results indicate that roots first retain moderate amounts of salts to facilitate osmoregulation, yet when sodicity exceeds a set point, SOS3-dependent HKT1;1 degradation switches the balance toward Na+ export out of the root. Thus, SOS3 functionally links and co-regulates the two major Na+ transport systems operating in vascular plants controlling plant tolerance to salinity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Transporte Proteico , Transporte Biológico , Proteólise , Osmorregulação , Trocadores de Sódio-Hidrogênio/genética , Proteínas de Arabidopsis/genética
5.
Plant Cell ; 35(8): 2910-2928, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37195876

RESUMO

The regulation of microRNA (miRNA) biogenesis is crucial for maintaining plant homeostasis under biotic and abiotic stress. The crosstalk between the RNA polymerase II (Pol-II) complex and the miRNA processing machinery has emerged as a central hub modulating transcription and cotranscriptional processing of primary miRNA transcripts (pri-miRNAs). However, it remains unclear how miRNA-specific transcriptional regulators recognize MIRNA loci. Here, we show that the Arabidopsis (Arabidopsis thaliana) HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS15)-HISTONE DEACETYLASE9 (HDA9) complex is a conditional suppressor of miRNA biogenesis, particularly in response to abscisic acid (ABA). When treated with ABA, hos15/hda9 mutants show enhanced transcription of pri-miRNAs that is accompanied by increased processing, leading to overaccumulation of a set of mature miRNAs. Moreover, upon recognition of the nascent pri-miRNAs, the ABA-induced recruitment of the HOS15-HDA9 complex to MIRNA loci is guided by HYPONASTIC LEAVES 1 (HYL1). The HYL1-dependent recruitment of the HOS15-HDA9 complex to MIRNA loci suppresses expression of MIRNAs and processing of pri-miRNA. Most importantly, our findings indicate that nascent pri-miRNAs serve as scaffolds for recruiting transcriptional regulators, specifically to MIRNA loci. This indicates that RNA molecules can act as regulators of their own expression by causing a negative feedback loop that turns off their transcription, providing a self-buffering system.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Histona Desacetilases/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(39): e2308435120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733739

RESUMO

GPR34 is a functional G-protein-coupled receptor of Lysophosphatidylserine (LysoPS), and has pathogenic roles in numerous diseases, yet remains poorly targeted. We herein report a cryo-electron microscopy (cryo-EM) structure of GPR34 bound with LysoPS (18:1) and Gi protein, revealing a unique ligand recognition mode with the negatively charged head group of LysoPS occupying a polar cavity formed by TM3, 6 and 7, and the hydrophobic tail of LysoPS residing in a lateral open hydrophobic groove formed by TM3-5. Virtual screening and subsequent structural optimization led to the identification of a highly potent and selective antagonist (YL-365). Design of fusion proteins allowed successful determination of the challenging cryo-EM structure of the inactive GPR34 complexed with YL-365, which revealed the competitive binding of YL-365 in a portion of the orthosteric binding pocket of GPR34 and the antagonist-binding-induced allostery in the receptor, implicating the inhibition mechanism of YL-365. Moreover, YL-365 displayed excellent activity in a neuropathic pain model without obvious toxicity. Collectively, this study offers mechanistic insights into the endogenous agonist recognition and antagonist inhibition of GPR34, and provides proof of concept that targeting GPR34 represents a promising strategy for disease treatment.


Assuntos
Inibição Psicológica , Neuralgia , Humanos , Microscopia Crioeletrônica , Ligação Competitiva
7.
J Neurosci ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019613

RESUMO

Although anesthesia provides favorable conditions for surgical procedures, recent studies have revealed that the brain remains active in processing noxious signals even during anesthesia. However, whether and how these responses affect the anesthesia effect remains unclear. The ventrolateral periaqueductal gray (vlPAG), a crucial hub for pain regulation, also plays an essential role in controlling general anesthesia. Hence, it was hypothesized that the vlPAG may be involved in the regulation of general anesthesia by noxious stimuli. Here, we found that acute noxious stimuli, including capsaicin-induced inflammatory pain, acetic acid-induced visceral pain, and incision-induced surgical pain, significantly delayed recovery from sevoflurane anesthesia in male mice, whereas this effect was absent in the spared nerve injury-induced chronic pain. Pre-treatment with peripheral analgesics could prevent the delayed recovery induced by acute nociception. Furthermore, we found that acute noxious stimuli, induced by the injection of capsaicin under sevoflurane anesthesia, increased c-Fos expression and activity in the GABAergic neurons of the ventrolateral periaqueductal gray (vlPAGGABA). Specific re-activation of capsaicin-activated vlPAGGABA neurons mimicked the effect of capsaicin and its chemogenetic inhibition prevented the delayed recovery from anesthesia induced by capsaicin. Finally, we revealed that the vlPAGGABA neurons regulated the recovery from anesthesia through the inhibition of ventral tegmental area dopaminergic neuronal activity, thus decreasing dopamine release and activation of dopamine D1-like receptors in the brain. These findings reveal a novel, cell- and circuit-based mechanism for regulating anesthesia recovery by nociception and it is important to provide new insights for guiding the management of the anesthesia recovery period.Significance Statement There is evidence that the brain still processes pain signals during anesthesia. However, the significance and mechanisms of this phenomenon are poorly understood. Here, utilizing various pain models under anesthesia and integrating multiple techniques, the current study found that acute, but not chronic, ongoing noxious stimuli delayed the recovery from sevoflurane anesthesia. Furthermore, we identified the vlPAGGABA-VTA circuit as a critical target for mediating this effect by inhibiting the VTA dopaminergic neurons, reducing dopamine release, and decreasing the activation of dopamine D1-like receptors in the brain. This study presents the initial finding that the absence of pain perception under anesthesia does not equate to the absence of harm, offering a new perspective on guiding the administration of anesthesia medications.

8.
Mol Psychiatry ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454083

RESUMO

Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.

9.
Nano Lett ; 24(10): 3221-3230, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416582

RESUMO

The hydrolysis of hydrides, represented by MgH2, delivers substantial capacity and presents an appealing prospect for an on-site hydrogen supply. However, the sluggish hydrolysis kinetics and low hydrogen yield of MgH2 caused by the formation of a passivation Mg(OH)2 layer hinder its practical application. Herein, we present a dual strategy encompassing microstructural design and compounding, leading to the successful synthesis of a core-shell-like nanostructured MgH2@Mg(BH4)2 composite, which demonstrates excellent hydrolysis performance. Specifically, the optimal composite with a low Ea of 9.05 kJ mol-1 releases 2027.7 mL g-1 H2 in 60 min, and its hydrolysis rate escalates to 1356.7 mL g-1 min-1 H2 during the first minute at room temperature. The nanocoating Mg(BH4)2 plays a key role in enhancing the hydrolysis kinetics through the release of heat and the formation of local concentration of Mg2+ field after its hydrolysis. This work offers an innovative concept for the design of hydrolysis materials.

10.
Plant J ; 113(6): 1122-1145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36582168

RESUMO

High yield and stress resistance are the major prerequisites for successful crop cultivation, and can be achieved by modifying plant architecture. Evolutionarily conserved growth-regulating factors (GRFs) control the growth of different tissues and organs of plants. Here, we provide a systematic overview of the expression patterns of GRF genes and the structural features of GRF proteins in different plant species. Moreover, we illustrate the conserved and divergent roles of GRFs, microRNA396 (miR396), and GRF-interacting factors (GIFs) in leaf, root, and flower development. We also describe the molecular networks involving the miR396-GRF-GIF module, and illustrate how this module coordinates with different signaling molecules and transcriptional regulators to control development of different plant species. GRFs promote leaf growth, accelerate grain filling, and increase grain size and weight. We also provide some molecular insight into how coordination between GRFs and other signaling modules enhances crop productivity; for instance, how the GRF-DELLA interaction confers yield-enhancing dwarfism while increasing grain yield. Finally, we discuss how the GRF-GIF chimera substantially improves plant transformation efficiency by accelerating shoot formation. Overall, we systematically review the conserved and divergent roles of GRFs and the miR396-GRF-GIF module in growth regulation, and also provide insights into how GRFs can be utilized to improve the productivity and nutrient content of crop plants.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Vegetal/genética , Folhas de Planta/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
11.
J Am Chem Soc ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115467

RESUMO

Electrochemical hydrogenation reactions demand rapid proton-coupled electron transfer at the electrode surface, the kinetics of which depend closely on pH. Buffer electrolytes are extensively employed to regulate pH over a wide range. However, the specific role of buffer species should be taken into account when interpreting the intrinsic pH dependence, which is easily overlooked in the current research. Herein, we report the electrochemical hydrogenation of hydroxyacetone, derived from glycerol feedstock, to propylene glycol with a faradaic efficiency of 56 ± 5% on a polycrystalline Cu electrode. The reaction activities are comparable in citrate, phosphate, and borate buffer electrolytes, encompassing different buffer identities and pH. The electrokinetic profile reveals that citrate is a site-blocking adsorbate on the Cu surface, thereby decreasing buffer concentration and increasing pH will enhance the reaction rate; phosphate is an explicit proton donor, which promotes the interfacial rate by increasing buffer concentration and decreasing pH, while borate is an innocent buffer, which can be used to investigate the intrinsic pH effect. Combined with in situ SEIRAS, we demonstrate that water is the primary proton source in citrate and borate electrolytes, reiterating the rationality of the proposed mechanism based on the microkinetic modeling. Our results emphasize the intrinsic complexity of the buffer system on the kinetic activity for electrocatalysis. It calls for special care when we diagnose the mechanistic pathway in buffer electrolytes convoluted by different buffer identities and pH.

12.
Anal Chem ; 96(1): 347-354, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153415

RESUMO

Sorting single cells from a population was of critical importance in areas such as cell line development and cell therapy. Image-based sorting is becoming a promising technique for the nonlabeling isolation of cells due to the capability of providing the details of cell morphology. This study reported the focusing of cells using microwell arrays and the following automatic size sorting based on the real-time recognition of cells. The simulation first demonstrated the converged streamlines to the symmetrical plane contributed to the focusing effect. Then, the influence of connecting microchannel, flowing length, particle size, and the sample flow rate on the focusing effect was experimentally analyzed. Both microspheres and cells could be aligned in a straight line at the Reynolds number (Re) of 0.027-0.187 and 0.027-0.08, respectively. The connecting channel was proved to drastically improve the focusing performance. Afterward, a tapered microwell array was utilized to focus sphere/cell spreading in a wide channel to a straight line. Finally, a custom algorithm was employed to identify and sort the size of microspheres/K562 cells with a throughput of 1 event/s and an accuracy of 97.8/97.1%. The proposed technique aligned cells to a straight line at low Reynolds numbers and greatly facilitated the image-activated sorting without the need for a high-speed camera or flow control components with high frequency. Therefore, it is of enormous application potential in the field of nonlabeled separation of single cells.


Assuntos
Tamanho da Partícula , Humanos , Microesferas , Células K562 , Simulação por Computador
13.
BMC Med ; 22(1): 176, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664766

RESUMO

BACKGROUND: There is an urgent unmet need for effective initial treatment for acute graft-versus-host disease (aGVHD) adding to the standard first-line therapy with corticosteroids after allogeneic haematopoietic stem cell transplantation (allo-HSCT). METHODS: We performed a multicentre, open-label, randomized, phase 3 study. Eligible patients (aged 15 years or older, had received allo-HSCT for a haematological malignancy, developed aGVHD, and received no previous therapies for aGVHD) were randomly assigned (1:1) to receive either 5 mg/m2 MTX on Days 1, 3, or 8 and then combined with corticosteroids or corticosteroids alone weekly. RESULTS: The primary endpoint was the overall response rate (ORR) on Day 10. A total of 157 patients were randomly assigned to receive either MTX plus corticosteroids (n = 78; MTX group) or corticosteroids alone (n = 79; control group). The Day 10 ORR was 97% for the MTX group and 81% for the control group (p = .005). Among patients with mild aGVHD, the Day 10 ORR was 100% for the MTX group and 86% for the control group (p = .001). The 1-year estimated failure-free survival was 69% for the MTX group and 41% for the control group (p = .002). There were no differences in treatment-related adverse events between the two groups. CONCLUSIONS: In conclusion, mini-dose MTX combined with corticosteroids can significantly improve the ORR in patients with aGVHD and is well tolerated, although it did not achieve the prespecified 20% improvement with the addition of MTX. TRIAL REGISTRATION: The trial was registered with clinicaltrials.gov (NCT04960644).


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Metotrexato , Metilprednisolona , Humanos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Feminino , Masculino , Metotrexato/administração & dosagem , Metotrexato/uso terapêutico , Pessoa de Meia-Idade , Adulto , Metilprednisolona/uso terapêutico , Metilprednisolona/administração & dosagem , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Adulto Jovem , Resultado do Tratamento , Quimioterapia Combinada , Idoso , Adolescente , Doença Aguda
14.
Plant Physiol ; 193(2): 1381-1394, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37437116

RESUMO

Photorespiration begins with the oxygenation reaction catalyzed by Rubisco and is the second highest metabolic flux in plants after photosynthesis. Although the core biochemical pathway of photorespiration has been well characterized, little is known about the underlying regulatory mechanisms. Some rate-limiting regulation of photorespiration has been suggested to occur at both the transcriptional and posttranslational levels, but experimental evidence is scarce. Here, we found that mitogen-activated protein kinase 2 (MAPK2) interacts with photorespiratory glycolate oxidase and hydroxypyruvate reductase, and the activities of these photorespiratory enzymes were regulated via phosphorylation modifications in rice (Oryza sativa L.). Gas exchange measurements revealed that the photorespiration rate decreased in rice mapk2 mutants under normal growth conditions, without disturbing photosynthesis. Due to decreased photorespiration, the levels of some key photorespiratory metabolites, such as 2-phosphoglycolate, glycine, and glycerate, significantly decreased in mapk2 mutants, but those of photosynthetic metabolites were not altered. Transcriptome assays also revealed that the expression levels of some flux-controlling genes in photorespiration were significantly downregulated in mapk2 mutants. Our findings provide molecular evidence for the association between MAPK2 and photorespiration and suggest that MAPK2 regulates the key enzymes of photorespiration at both the transcriptional and posttranslational phosphorylation levels in rice.


Assuntos
Oryza , Oryza/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fotossíntese/genética , Plantas/metabolismo , Dióxido de Carbono/metabolismo
15.
NMR Biomed ; 37(4): e5077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38057971

RESUMO

Ultralow-field magnetic resonance imaging (ULF-MRI) has broad application prospects because of its portable hardware system and low cost. However, the low B0 magnitude of ULF-MRI results in a reduced signal-to-noise ratio in qualitative images compared with that of commercial high-field MRI, which can affect the visibility and delineation of tissues and lesions. In this work, a magnetic resonance fingerprinting (MRF) approach is applied to a homemade 50-mT ULF-MRI scanner to achieve efficient quantitative brain imaging, which is an original and promising disease-diagnosis approach for portable MRI systems. An inversion recovery fast imaging with steady-state precession-based sequence is utilized for MRF through Cartesian acquisition. A microdictionary analysis method is proposed to select the optimal repetition time and flip angle variation schedule and ensure the best possible tissue discriminative ability of MRF. The T1 and T2 relaxation properties and the B1 + distribution are considered for estimation, and the results are compared with those of gold standard (GS) quantitative imaging or qualitative imaging methods. The phantom experiment indicates that the quantitative values obtained by schedule-optimized MRF show good agreement, and the bias from the GS results is acceptable. The in vivo experiment shows that the relaxation times of white and gray matter estimated by MRF are slightly lower than the reference data, and the relaxation times of lipid are within the range of the reference data. Compared with qualitative MRI under ULF, MRF can intuitively reflect various items of brain tissue information in a single scan, so it is a valuable addition to point-of-care imaging approaches.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
16.
Cancer Cell Int ; 24(1): 47, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291427

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are significant contributors to various human malignancies. The aberrant expression of lncRNA LINC00894 has been reported in various human malignancies. We aimed to illustrate the role of LINC00894 and its underlying mechanism in the development of papillary thyroid carcinoma (PTC). METHODS: We performed bioinformatics analysis of differentially expressed RNAs from TCGA and GEO datasets and selected the target lncRNA LINC00894. SRAMP analysis revealed abundant M6A modification sites in LINC00894. Further analysis of StarBase, GEPIA, and TCGA datasets was performed to identify the related differentially expressed genes METTL3. Colony formation and CCK-8 assays confirmed the relationship between LINC00894, METTL3, and the proliferative capacity of PTC cells. The analysis of AnnoLnc2, Starbase datasets, and meRIP-PCR and qRT‒PCR experiments confirmed the influence of METTL3-mediated m6A modification on LINC00894. The study employed KEGG enrichment analysis as well as Western blotting to investigate the impact of LINC00894 on the expression of proteins related to the Hippo signalling pathway. RESULTS: LINC00894 downregulation was detected in PTC tissues and cells and was even further downregulated in PTC with lymphatic metastasis. LINC00894 inhibits the lymphangiogenesis of vascular endothelial cells and the proliferation of cancer cells. METTL3 enhances PTC progression by upregulating LINC00894 by enhancing LINC00894 mRNA stability through the m6A-YTHDC2-dependent pathway. LINC00894 may inhibit PTC malignant phenotypes through the Hippo signalling pathway. CONCLUSION: The METTL3-YTHDC2 axis stabilizes LINC00894 mRNA in an m6A-dependent manner and subsequently inhibits tumour malignancy through the Hippo signalling pathway.

17.
Nat Chem Biol ; 18(8): 831-840, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35637350

RESUMO

Given the promising clinical value of allosteric modulators of G protein-coupled-receptors (GPCRs), mechanistic understanding of how these modulators alter GPCR function is of significance. Here, we report the crystallographic and cryo-electron microscopy structures of the cannabinoid receptor CB1 bound to the positive allosteric modulator (PAM) ZCZ011. These structures show that ZCZ011 binds to an extrahelical site in the transmembrane 2 (TM2)-TM3-TM4 surface. Through (un)biased molecular dynamics simulations and mutagenesis experiments, we show that TM2 rearrangement is critical for the propagation of allosteric signals. ZCZ011 exerts a PAM effect by promoting TM2 rearrangement in favor of receptor activation and increasing the population of receptors that adopt an active conformation. In contrast, ORG27569, a negative allosteric modulator (NAM) of CB1, also binds to the TM2-TM3-TM4 surface and exerts a NAM effect by impeding the TM2 rearrangement. Our findings fill a gap in the understanding of CB1 allosteric regulation and could guide the rational design of CB1 allosteric modulators.


Assuntos
Simulação de Dinâmica Molecular , Receptor CB1 de Canabinoide , Regulação Alostérica , Sítio Alostérico , Microscopia Crioeletrônica , Receptor CB1 de Canabinoide/genética
18.
Biotechnol Bioeng ; 121(7): 2163-2174, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38595326

RESUMO

Pathogenic bacterial membrane proteins (MPs) are a class of vaccine and antibiotic development targets with widespread clinical application. However, the inherent hydrophobicity of MPs poses a challenge to fold correctly in living cells. Herein, we present a comprehensive method to improve the soluble form of MP antigen by rationally designing multi-epitope chimeric antigen (ChA) and screening two classes of protein-assisting folding element. The study uses a homologous protein antigen as a functional scaffold to generate a ChA possessing four epitopes from transferrin-binding protein A of Glaesserella parasuis. Our engineered strain, which co-expresses P17 tagged-ChA and endogenous chaperones groEL-ES, yields a 0.346 g/L highly soluble ChA with the property of HPS-positive serum reaction. Moreover, the protein titer of ChA reaches 4.27 g/L with >90% soluble proportion in 5-L bioreactor, which is the highest titer reported so far. The results highlight a timely approach to design and improve the soluble expression of MP antigen in industrially viable applications.


Assuntos
Antígenos de Bactérias , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Reatores Biológicos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Escherichia coli/genética , Escherichia coli/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Solubilidade
19.
J Org Chem ; 89(7): 4484-4495, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38470436

RESUMO

Nickel-catalyzed carbonylation of alkenes is a stereoselective and regioselective method for the synthesis of amide compounds. Theoretical predictions with density functional theory calculations revealed the mechanism and origin of stereoselectivity and regioselectivity for the nickel-catalyzed carbonylation of norbornene. The carbonylation reaction proceeds through oxidative addition, migration insertion of alkenes, and subsequent reduction elimination to afford cis-carbonylation product. The C-N bond activation of amides is unfavorable because the oxidative addition ability of the C-C bond is stronger than that of the C-N bond. The determining step of stereoselectivity is the migratory insertion of the strained olefin. The structural analysis shows that steroselectivity is controlled by the steric hindrance of methyl groups to olefins and substituents to IMes in ligands.

20.
Inorg Chem ; 63(19): 8899-8907, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38695311

RESUMO

Given the escalating significance of near-infrared (NIR) spectroscopy across industries, agriculture, and various domains, there is an imminent need to address the development of a novel generation of intelligent NIR light sources. Here, a series of Cr3+-doped BaLaMgNbO6 (BLMN) ultrabroadband NIR phosphor with a coverage range of 650-1300 nm were developed. The emission peak locates at 830 nm with a full width at half maximum of 210 nm. This ultrabroadband emission originates from the 4T2→4A2 transition of Cr3+ and the simultaneous occupation of [MgO6] and [NbO6] octahedral sites confirmed by low photoluminescence spectra (77-250 K), time-resolved photoluminescence spectra, and electron paramagnetic resonance spectra. The fluxing strategy improves the luminescence intensity and thermal stability of BLMN:0.02Cr3+ phosphors. The internal quantum efficiency (IQE) is 51%, external quantum efficiency (EQE) can reach 33%, and thermal stability can be maintained at 60%@100 °C. Finally, we successfully demonstrated the application of BLMN:Cr3+ ultrabroadband in the qualitative analysis of organic matter and food freshness detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA