Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 63(2): 255-265, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32320626

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal, medically refractory syndrome characterized by intrapulmonary accumulations of extracellular matrix (ECM) proteins produced by fibroblasts. Activation, clonal expansion, and differentiation of lymphocytes are also frequently present in IPF. Activated T cells are known to exert several effects that promote ECM production, but opposing homeostatic actions, wherein T cells can inhibit fibrosis, are less well understood. We found that CD27, a TNF receptor ubiquitously expressed on naive T cells, is downregulated on CD4 T cells of patients with IPF and that CD70, the sole ligand for CD27, is present on human pulmonary fibroblasts. We hypothesized that cognate engagements between lymphocyte CD27 and fibroblast CD70 could have functional consequences. Accordingly, a series of subsequent studies were conducted to examine the possible role of CD27-CD70 interactions in the regulation of fibrogenesis. Using IB, flow cytometry, RT-PCR, and kinomic assays, we found that fibroblast CD70 expression was inversely correlated with cell density and upregulated by TGF-ß1 (transforming growth factor-ß1). CD70 agonists, including T-cell-derived soluble CD27, markedly diminished fibroblast collagen and fibronectin synthesis, and these effects were potent enough to also inhibit profibrotic actions of TGF-ß1 on ECM production in vitro and in two distinct ex vivo human skin models. CD70 activation was mediated by AKT (protein kinase B) and complex interconnected signaling pathways, and it was abated by prior CD70 knockdown. These results show that the CD70-CD27 axis modulates T-cell-fibroblast interactions and may be an important regulator of fibrosis and wound healing. Fibroblast CD70 could also be a novel target for specific mechanistically based antifibrosis treatments.


Assuntos
Ligante CD27/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Ativação Linfocitária/fisiologia , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Cicatrização/fisiologia
2.
Nano Lett ; 19(3): 2138-2147, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30719923

RESUMO

Current challenges in cutaneous tumor therapy are healing the skin wounds resulting from surgical resection and eliminating possible residual tumor cells to prevent recurrence. To address this issue, bifunctional biomaterials equipped with effective tumor therapeutic capacity for skin cancers and simultaneous tissue regenerative ability for wound closure are highly recommended. Herein, we report an injectable thermosensitive hydrogel (named BT-CTS thermogel) with the integration of nanosized black titania (B-TiO2- x, ∼50 nm) nanoparticles into a chitosan (CTS) matrix. The B-TiO2- x nanocrystal exhibits a crystalline/amorphous core-shell structure with abundant oxygen vacancies, which endows the BT-CTS thermogels with simultaneous photothermal therapy (PTT) and photodynamic therapy (PDT) effects under single-wavelength near-infrared laser irradiation, leading to an excellent therapeutic effect on skin tumors in vitro and in vivo. Moreover, the BT-CTS thermogel not only supports the adhesion, proliferation, and migration of normal skin cells but also facilitates skin tissue regeneration in a murine chronic wound model. Therefore, such BT-CTS thermogels with easy injectability, excellent thermostability, and simultaneous PTT and PDT efficacy as well as tissue regenerative activity offers a promising pathway for the healing of cutaneous tumor-induced wounds.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Fotoquimioterapia , Neoplasias Cutâneas/terapia , Terapia Combinada , Células HeLa , Humanos , Hipertermia Induzida/métodos , Nanopartículas Metálicas/química , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Medicina Regenerativa/tendências , Neoplasias Cutâneas/patologia , Nanomedicina Teranóstica/métodos , Titânio/química , Cicatrização/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 113(30): 8538-43, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27407144

RESUMO

The discovery of novel globins in diverse organisms has stimulated intense interest in their evolved function, beyond oxygen binding. Globin X (GbX) is a protein found in fish, amphibians, and reptiles that diverged from a common ancestor of mammalian hemoglobins and myoglobins. Like mammalian neuroglobin, GbX was first designated as a neuronal globin in fish and exhibits six-coordinate heme geometry, suggesting a role in intracellular electron transfer reactions rather than oxygen binding. Here, we report that GbX to our knowledge is the first six-coordinate globin and the first globin protein apart from hemoglobin, found in vertebrate RBCs. GbX is present in fish erythrocytes and exhibits a nitrite reduction rate up to 200-fold faster than human hemoglobin and up to 50-fold higher than neuroglobin or cytoglobin. Deoxygenated GbX reduces nitrite to form nitric oxide (NO) and potently inhibits platelet activation in vitro, to a greater extent than hemoglobin. Fish RBCs also reduce nitrite to NO and inhibit platelet activation to a greater extent than human RBCs, whereas GbX knockdown inhibits this nitrite-dependent NO signaling. The description of a novel, six-coordinate globin in RBCs with dominant electron transfer and nitrite reduction functionality provides new insights into the evolved signaling properties of ancestral heme-globins.


Assuntos
Eritrócitos/metabolismo , Peixes/metabolismo , Globinas/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Animais , Células Cultivadas , Transporte de Elétrons , Eritrócitos/citologia , Peixes/sangue , Peixes/genética , Expressão Gênica , Globinas/genética , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Oxirredução , Interferência de RNA , Peixe-Zebra/sangue , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
J Immunol ; 191(5): 2089-95, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23872052

RESUMO

We hypothesized B cells are involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a progressive, restrictive lung disease that is refractory to glucocorticoids and other nonspecific therapies, and almost invariably lethal. Accordingly, we sought to identify clinically associated B cell-related abnormalities in these patients. Phenotypes of circulating B cells were characterized by flow cytometry. Intrapulmonary processes were evaluated by immunohistochemistry. Plasma B lymphocyte stimulating factor (BLyS) was assayed by ELISA. Circulating B cells of IPF subjects were more Ag differentiated, with greater plasmablast proportions (3.1 ± 0.8%) than in normal controls (1.3 ± 0.3%) (p < 0.03), and the extent of this differentiation correlated with IPF patient lung volumes (r = 0.44, p < 0.03). CD20(+) B cell aggregates, diffuse parenchymal and perivascular immune complexes, and complement depositions were all prevalent in IPF lungs, but much less prominent or absent in normal lungs. Plasma concentrations of BLyS, an obligate factor for B cell survival and differentiation, were significantly greater (p < 0.0001) in 110 IPF (2.05 ± 0.05 ng/ml) than among 53 normal (1.40 ± 0.04 ng/ml) and 90 chronic obstructive pulmonary disease subjects (1.59 ± 0.05 ng/ml). BLyS levels were uniquely correlated among IPF patients with pulmonary artery pressures (r = 0.58, p < 0.0001). The 25% of IPF subjects with the greatest BLyS values also had diminished 1-y survival (46 ± 11%), compared with those with lesser BLyS concentrations (81 ± 5%) (hazard ratio = 4.0, 95% confidence interval = 1.8-8.7, p = 0.0002). Abnormalities of B cells and BLyS are common in IPF patients, and highly associated with disease manifestations and patient outcomes. These findings have implications regarding IPF pathogenesis and illuminate the potential for novel treatment regimens that specifically target B cells in patients with this lung disease.


Assuntos
Fator Ativador de Células B/sangue , Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular , Fibrose Pulmonar Idiopática/imunologia , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Fibrose Pulmonar Idiopática/sangue , Fibrose Pulmonar Idiopática/patologia , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade
5.
Am J Respir Crit Care Med ; 189(8): 966-74, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24628285

RESUMO

RATIONALE: C-X-C motif chemokine 13 (CXCL13) mediates B-cell trafficking and is increased, proportionately to disease activity, in many antibody-mediated syndromes. Dysregulated B cells have recently been implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis. OBJECTIVES: To determine if CXCL13 is associated with IPF progression. METHODS: CXCL13 was measured in lungs by DNA microarray and immunohistochemistry, and in plasma by ELISA. MEASUREMENTS AND MAIN RESULTS: CXCL13 mRNA was threefold and eightfold greater in IPF lungs (n = 92) compared with chronic obstructive pulmonary disease (COPD) (n = 191) and normal (n = 108) specimens, respectively (P < 0.0001). IPF lungs also showed increased CXCL13 staining. Plasma CXCL13 concentrations (pg/ml) were greater in 95 patients with IPF (94 ± 8) than in 128 subjects with COPD (53 ± 9) and 57 normal subjects (35 ± 3) (P < 0.0001). Circulating CXCL13 levels were highest in patients with IPF with pulmonary artery hypertension (P = 0.01) or acute exacerbations (P = 0.002). Six-month survival of patients with IPF in the highest quartile of plasma CXCL13 was 65 ± 10% versus 93 ± 10% in the others (hazard ratio, 5.5; 95% confidence interval, 1.8-16.9; P = 0.0008). CXCL13 increases by more than 50% in IPF serial assays, irrespective of initial values, also presaged respiratory failure (hazard ratio, 7.2; 95% confidence interval, 1.3-40.0; P = 0.008). In contrast, CXCL13 clinical associations in subjects with COPD were limited to modest correlations with FEV1 (P = 0.05) and progression of radiographic emphysema (P = 0.05). CONCLUSIONS: CXCL13 is increased and is a prognostic biomarker in patients with IPF, and more so than in patients with COPD. This contrast indicates CXCL13 overexpressions are intrinsic to IPF, rather than an epiphenomenon of lung injury. The present data implicate CXCL13 and B cells in IPF pathogenesis, and support considerations for trials of specific B-cell-targeted therapies in patients with this intractable disease.


Assuntos
Quimiocina CXCL13/análise , Fibrose Pulmonar Idiopática/sangue , Fibrose Pulmonar Idiopática/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Casos e Controles , Quimiocina CXCL13/sangue , Quimiocina CXCL13/genética , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/mortalidade , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Valor Preditivo dos Testes , Prognóstico , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Fatores de Risco , Sensibilidade e Especificidade , Índice de Gravidade de Doença
6.
Am J Respir Crit Care Med ; 187(7): 768-75, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23262513

RESUMO

RATIONALE: Diverse autoantibodies are present in most patients with idiopathic pulmonary fibrosis (IPF). We hypothesized that specific autoantibodies may associate with IPF manifestations. OBJECTIVES: To identify clinically relevant, antigen-specific immune responses in patients with IPF. METHODS: Autoantibodies were detected by immunoblots and ELISA. Intrapulmonary immune processes were evaluated by immunohistochemistry. Anti-heat shock protein 70 (HSP70) IgG was isolated from plasma by immunoaffinity. Flow cytometry was used for leukocyte functional studies. MEASUREMENTS AND MAIN RESULTS: HSP70 was identified as a potential IPF autoantigen in discovery assays. Anti-HSP70 IgG autoantibodies were detected by immunoblots in 3% of 60 control subjects versus 25% of a cross-sectional IPF cohort (n = 122) (P = 0.0004), one-half the patients with IPF who died (P = 0.008), and 70% of those with acute exacerbations (P = 0.0005). Anti-HSP70 autoantibodies in patients with IPF were significantly associated with HLA allele biases, greater subsequent FVC reductions (P = 0.0004), and lesser 1-year survival (40 ± 10% vs. 80 ± 5%; hazard ratio = 4.2; 95% confidence interval, 2.0-8.6; P < 0.0001). HSP70 protein, antigen-antibody complexes, and complement were prevalent in IPF lungs. HSP70 protein was an autoantigen for IPF CD4 T cells, inducing lymphocyte proliferation (P = 0.004) and IL-4 production (P = 0.01). IPF anti-HSP70 autoantibodies activated monocytes (P = 0.009) and increased monocyte IL-8 production (P = 0.049). ELISA confirmed the association between anti-HSP70 autoreactivity and IPF outcome. Anti-HSP70 autoantibodies were also found in patients with other interstitial lung diseases but were not associated with their clinical progression. CONCLUSIONS: Patients with IPF with anti-HSP70 autoantibodies have more near-term lung function deterioration and mortality. These findings suggest antigen-specific immunoassays could provide useful clinical information in individual patients with IPF and may have implications for understanding IPF progression.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Autoanticorpos/sangue , Proteínas de Choque Térmico HSP70/imunologia , Fibrose Pulmonar Idiopática/imunologia , Imunoglobulina G/sangue , Pulmão/imunologia , Idoso , Complexo Antígeno-Anticorpo/análise , Autoanticorpos/análise , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Interleucina-4/imunologia , Interleucina-8/imunologia , Modelos Lineares , Pulmão/patologia , Masculino , Prognóstico , Modelos de Riscos Proporcionais
7.
Artigo em Inglês | MEDLINE | ID: mdl-37394619

RESUMO

Natural materials and bioprocesses provide abundant inspirations for the design and synthesis of high-performance nanomaterials. In the past several decades, bioinspired nanomaterials have shown great potential in the application of biomedical fields, such as tissue engineering, drug delivery, and cancer therapy, and so on. In this review, three types of bioinspired strategies for biomedical nanomaterials, that is, inspired by the natural structures, biomolecules, and bioprocesses, are mainly introduced. We summarize and discuss the design concepts and synthesis approaches of various bioinspired nanomaterials along with their specific roles in biomedical applications. Additionally, we discuss the challenges for the development of bioinspired biomedical nanomaterials, such as mechanical failure in wet environment, limitation in scale-up fabrication, and lack of deep understanding of biological properties. It is expected that the development and clinical translation of bioinspired biomedical nanomaterials will be further promoted under the cooperation of interdisciplinary subjects in future. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Nanoestruturas , Humanos , Nanoestruturas/química , Sistemas de Liberação de Medicamentos , Engenharia Tecidual
8.
ACS Appl Bio Mater ; 7(1): 429-442, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171011

RESUMO

Hemorrhage and infection after emergency trauma are two main factors that cause deaths. It is of great importance to instantly stop bleeding and proceed with antibacterial treatment for saving lives. However, there is still a huge need and challenge to develop materials with functions of both rapid hemostasis and effective antibacterial therapy. Herein, we propose the fabrication of a composite aerogel mainly consisting of mesoporous bioactive glass (MBG) and graphene oxide (GO) through freeze-drying. This composite aerogel has a three-dimensional porous structure, high absorption, good hydrophilicity, and negative zeta potential. Moreover, it exhibits satisfactory hemostatic activities including low BCI, good hemocompatibility, and activation of intrinsic pathways. When applied to rat liver injury bleeding, it can decrease 60% hemostasis time and 75% blood loss amount compared to medical gauze. On the other hand, the composite aerogel shows excellent photothermal antibacterial capacity against Staphylococcus aureus and Escherichia coli. Animal experiments further verify that this composite aerogel can effectively kill bacteria in wound sites via photothermal treatment and promote wound healing. Hence, this MBG-GO composite aerogel makes a great choice for the therapy of emergency trauma with massive hemorrhage and bacterial infection.


Assuntos
Grafite , Hemostáticos , Ratos , Animais , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Hemostasia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Hemorragia
9.
Natl Sci Rev ; 11(4): nwae035, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38463933

RESUMO

Tissue regeneration is a complicated process that relies on the coordinated effort of the nervous, vascular and immune systems. While the nervous system plays a crucial role in tissue regeneration, current tissue engineering approaches mainly focus on restoring the function of injury-related cells, neglecting the guidance provided by nerves. This has led to unsatisfactory therapeutic outcomes. Herein, we propose a new generation of engineered neural constructs from the perspective of neural induction, which offers a versatile platform for promoting multiple tissue regeneration. Specifically, neural constructs consist of inorganic biomaterials and neural stem cells (NSCs), where the inorganic biomaterials endows NSCs with enhanced biological activities including proliferation and neural differentiation. Through animal experiments, we show the effectiveness of neural constructs in repairing central nervous system injuries with function recovery. More importantly, neural constructs also stimulate osteogenesis, angiogenesis and neuromuscular junction formation, thus promoting the regeneration of bone and skeletal muscle, exhibiting its versatile therapeutic performance. These findings suggest that the inorganic-biomaterial/NSC-based neural platform represents a promising avenue for inducing the regeneration and function recovery of varying tissues and organs.

10.
Regen Biomater ; 10: rbad032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081861

RESUMO

Tissue engineering strategy that combine biomaterials with living cells has shown special advantages in tissue regeneration and promoted the development of regenerative medicine. In particular, the rising of 3D printing technology further enriched the structural design and composition of tissue engineering scaffolds, which also provided convenience for cell loading and cell delivery of living cells. In this review, two types of cell-delivery scaffolds for tissue regeneration, including 3D printed scaffolds with subsequent cell-seeding and 3D cells bioprinted scaffolds, are mainly reviewed. We devote a major part to present and discuss the recent advances of two 3D printed cell-delivery scaffolds in regeneration of various tissues, involving bone, cartilage, skin tissues etc. Although two types of 3D printed cell-delivery scaffolds have some shortcomings, they do have generally facilitated the exploration of tissue engineering scaffolds in multiple tissue regeneration. It is expected that 3D printed cell-delivery scaffolds will be further explored in function mechanism of seeding cells in vivo, precise mimicking of complex tissues and even organ reconstruction under the cooperation of multiple fields in future.

11.
J Orthop Surg Res ; 18(1): 552, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525208

RESUMO

CONTEXT: Naru 3 pill is a traditional Mongolian medicine for the treatment of intervertebral disc degeneration (IDD), but the mechanism is not yet clear. OBJECTIVE: This study investigated the mechanism of Naru 3 pill in the treatment of IDD. MATERIALS AND METHODS: Active ingredients and related targets of Naru 3 pill, as well as IDD-related genes, were collected from public databases. The analysis was performed by protein‒protein interaction network analysis, gene ontology and Kyoto Gene and Genome Encyclopedia (KEGG) functional enrichment analysis, molecular docking and molecular dynamics simulations. Finally, the network pharmacology results were validated by in vitro experiments. RESULTS: Network analysis showed that sesamin, piperine and ellagic acid were potential key components and CASP3, BAX and BCL2 were key targets. KEGG analysis indicated the apoptotic pathway as a potential pathway. Molecular docking showed that sesamin interacted better with the targets than the other components. The results of molecular dynamics simulations indicated that the three systems BAX-sesamin, BCL2-sesamin and CASP3-sesamin were stable and reasonable during the simulation. In vitro experiments showed that sesamin had the least effect on cell growth and the most pronounced proliferation-promoting effect, and so sesamin was considered the key component. The experiments confirmed that sesamin had antiapoptotic effects and reversed the expression of CASP3, BAX and BCL2 in degeneration models, which was consistent with the network pharmacology results. Furthermore, sesamin alleviated extracellular matrix (ECM) degeneration and promoted cell proliferation in the IDD model. CONCLUSION: The present study suggested that Naru 3 pill might exert its therapeutic and antiapoptotic effects on IDD by delaying ECM degradation and promoting cell proliferation, which provides a new strategy for the treatment of IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Caspase 3 , Degeneração do Disco Intervertebral/tratamento farmacológico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteína X Associada a bcl-2 , Cartilagem
12.
Adv Sci (Weinh) ; 10(21): e2301309, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119499

RESUMO

Tendon-to-bone interface has a hierarchical structure and gradient component that are conducive to distributing the stresses to achieve movement. Conventional biomaterials lack the capacity to induce synchronous repair of multiple tissues, resulting in the failure of the interface repair. Biomimetic strategies have attracted enormous attention in the field of complex structure regeneration because they can meet the different physiological requirements of multiple tissues. Herein, a biomimetic ink mimicking tendon/bone tissues is developed by combining tendon/bone-related cells and Mo-containing silicate (MS) bioceramics. Subsequently, biomimetic multicellular scaffolds are fabricated to achieve the simulation of the hierarchical structure and cellular composition of tendon-to-bone interfaces by the spatial distribution of the biomimetic inks via 3D bioprinting, which is of great significance for inducing the regeneration of complex structures in the interface region. In addition, attributed to the desirable ionic microenvironment created by MS bioceramics, the biomimetic scaffolds possess the dual function of inducing tendon/bone-related cells tenogenic and osteogenic differentiation in vitro, and promote the integrated regeneration of tendon-to-bone interfaces in vivo. The study offers a feasible strategy to construct biomimetic multicellular scaffolds with bifunction for inducing multi-lineage tissue regeneration, especially for regenerating soft-to-hard tissue interfaces.


Assuntos
Bioimpressão , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Osteogênese , Tinta , Biomimética , Regeneração Óssea , Tendões
13.
Nat Commun ; 14(1): 8333, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097556

RESUMO

Cytoglobin is a heme protein with unresolved physiological function. Genetic deletion of zebrafish cytoglobin (cygb2) causes developmental defects in left-right cardiac determination, which in humans is associated with defects in ciliary function and low airway epithelial nitric oxide production. Here we show that Cygb2 co-localizes with cilia and with the nitric oxide synthase Nos2b in the zebrafish Kupffer's vesicle, and that cilia structure and function are disrupted in cygb2 mutants. Abnormal ciliary function and organ laterality defects are phenocopied by depletion of nos2b and of gucy1a, the soluble guanylate cyclase homolog in fish. The defects are rescued by exposing cygb2 mutant embryos to a nitric oxide donor or a soluble guanylate cyclase stimulator, or with over-expression of nos2b. Cytoglobin knockout mice also show impaired airway epithelial cilia structure and reduced nitric oxide levels. Altogether, our data suggest that cytoglobin is a positive regulator of a signaling axis composed of nitric oxide synthase-soluble guanylate cyclase-cyclic GMP that is necessary for normal cilia motility and left-right patterning.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Citoglobina/genética , Padronização Corporal/genética , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo , Cílios/metabolismo , Óxido Nítrico Sintase/metabolismo
14.
Am J Pathol ; 179(2): 745-53, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21801868

RESUMO

Obliterative bronchiolitis is a frequent, morbid, and usually refractory complication of lung transplantation. Mechanistic study of obliterative bronchiolitis would be aided by development of a relevant model that uses human immune effector cells and airway targets. Our objective was to develop a murine chimera model that mimics obliterative bronchiolitis of lung allograft recipients in human airways in vivo. Human peripheral blood mononuclear cells were adoptively transferred to immunodeficient mice lacking activity of T, B, and NK cells, with and without concurrent transplantations of human small airways dissected from allogeneic cadaveric lungs. Chimerism with human T cells occurred in the majority of recipient animals. The chimeric T cells became highly activated, rapidly infiltrated into the small human airway grafts, and caused obliterative bronchiolitis. In contrast, airways implanted into control mice that did not also receive human peripheral blood mononuclear cell transfers remained intact. In vitro proliferation assays indicated that the chimeric T cells had enhanced specific proliferative responses to donor airway alloantigens. This model confirms the critical role of T cells in development of obliterative bronchiolitis among human lung allograft recipients and provides a novel and easily implemented mechanism for detailed, reductionist in vivo studies of human T-cell responses to allogeneic human small airways.


Assuntos
Bronquiolite Obliterante/diagnóstico , Transplante de Pulmão/efeitos adversos , Transferência Adotiva , Animais , Bronquiolite Obliterante/complicações , Proliferação de Células , Modelos Animais de Doenças , Rejeição de Enxerto , Humanos , Leucócitos Mononucleares/citologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Linfócitos T/citologia
15.
Methods Mol Biol ; 2498: 387-396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35727559

RESUMO

Western blots are employed to detect and characterize amounts of proteins in biological samples. Quantifications are traditionally carried out through data normalization by housekeeping protein method. This approach does not account for variations not intrinsically dependent on the sample such as different experimental conditions and type of samples. Zebrafish researchers often face the challenge of comparing embryos at different developmental stages or from different strains. Housekeeping protein amount can change in these conditions therefore adding an unwanted quantification error. Here we describe the method to analyze mutant zebrafish embryos at different stages by western blot using the Stain-Free technology for normalization. We present Globin X quantification at 2 and 5 days postfertilization in wild type and in the bloodless Vlad Tepes (vlt) zebrafish mutant that lack red blood cells.


Assuntos
Corantes , Peixe-Zebra , Animais , Western Blotting , Corantes/metabolismo , Embrião não Mamífero/metabolismo , Proteínas/metabolismo , Peixe-Zebra/genética
16.
Biofabrication ; 14(3)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35417888

RESUMO

Bioceramics are widely used in bone tissue repair and regeneration due to their desirable biocompatibility and bioactivity. However, the brittleness of bioceramics results in difficulty of surgical operation, which greatly limits their clinical applications. The spicules of the marine spongeEuplectella aspergillum(Ea) possess high flexibility and fracture toughness resulting from concentric layered silica glued by a thin organic layer. Inspired by the unique properties of sponge spicules, flexible bioceramic-based scaffolds with spicule-like concentric layered biomimetic microstructures were constructed by combining two-dimensional (2D) bioceramics and 3D printing. 2D bioceramics could be assembled and aligned by modulating the shear force field in the direct ink writing (DIW) of 3D printing. The prepared spicules-inspired flexible bioceramic-based (SFB) scaffolds differentiated themselves from traditional 3D-printed irregular particles-based bioceramic-based scaffolds as they could be adaptably compressed, cut, folded, rolled and twisted without the occurrence of fracture, significantly breaking through the bottleneck of inherent brittleness of traditional bioceramic scaffolds. In addition, SFB scaffolds showed significantly enhancedin vitroandin vivobone-forming bioactivity as compared to conventional ß-tricalcium phosphate (ß-TCP) scaffolds, suggesting that SFB scaffolds combined both of excellent mechanical and bioactive characteristics, which is believed to greatly promote the bioceramic science and their clinical applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Impressão Tridimensional , Dióxido de Silício , Engenharia Tecidual/métodos , Alicerces Teciduais/química
17.
Regen Biomater ; 9: rbac055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072263

RESUMO

For the research of biomaterials in bone tissue engineering, it is still a challenge to fabricate bioceramics that overcome brittleness while maintaining the great biological performance. Here, inspired by the toughness of natural materials with hierarchical laminated structure, we presented a directional assembly-sintering approach to fabricate laminated MXene/calcium silicate-based (L-M/CS) bioceramics. Benefiting from the orderly laminated structure, the L-M/CS bioceramics exhibited significantly enhanced toughness (2.23 MPa·m1/2) and high flexural strength (145 MPa), which were close to the mechanical properties of cortical bone. Furthermore, the L-M/CS bioceramics possessed more suitable degradability than traditional CaSiO3 bioceramics due to the newly formed CaTiSiO5 after sintering. Moreover, the L-M/CS bioceramics showed good biocompatibility and could stimulate the expression of osteogenesis-related genes. The mechanism of promoting osteogenic differentiation had been shown to be related to the Wnt signaling pathway. This work not only fabricated calcium silicate-based bioceramics with excellent mechanical and biological properties for bone tissue engineering but also provided a strategy for the combination of bionics and bioceramics.

18.
Adv Healthc Mater ; 11(14): e2200287, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35488775

RESUMO

The construction of hierarchical porous structure in biomaterials is of great significance for improving nutrient transport and biological performance. However, it is still challenging to design porous bone substitutes with high strength and biological properties, which limits their clinical applications in load-bearing bone regeneration. Herein, based on hierarchical porous structure of renewable bamboo, the mineralized calcium phosphate/bamboo composite scaffolds with high strength and excellent transport performance are successfully prepared in combination of biotemplated approach and biomimetic mineralization. The mineralized biomaterials have simultaneously achieved high mechanical strength and low modulus, similar to those of cortical bone. Furthermore, the mineralized biomaterials exhibit good liquid transport capacity and can transport cells along anti-gravity direction. Based on density functional theory (DFT) calculations, the mineralized calcium phosphate reveals the optimal H2 O adsorption energy (-0.651 eV) and low diffusion energy barrier (0.743 eV), which is conducive to enhance hydrophilicity and liquid transport performance. Moreover, owing to the synergistic effect of the porous structure of biotemplate and bioactive mineralized components, the mineralized biomaterials possess enhanced bone integration and osteoconduction properties. The present study shed light on deeper understanding of mineralized biosourced materials, offering a strategy of combining green chemistry with tissue engineering to prepare eco-friendly biomaterials.


Assuntos
Materiais Biocompatíveis , Materiais Biomiméticos , Substitutos Ósseos , Osso e Ossos , Sasa , Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Fosfatos de Cálcio/química , Sasa/química , Engenharia Tecidual
19.
J Orthop Surg Res ; 16(1): 55, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446250

RESUMO

BACKGROUND: Intervertebral disk degeneration (IDD) is a degenerative disease characterized by cytoplasm loss and extracellular matrix degradation. Numerous evidence reported that miRNAs participated in IDD development. Nevertheless, the function of miR-142-3p in IDD development remains unknown. This study mainly explored the potential role and function of miR-142-3p in IDD development. METHODS: One percent fetal bovine serum was used to induce the degeneration of ATDC5 cells, and miR-142-3p level was examined by qRT-PCR. Then, miR-142-3p mimic/inhibitor and its corresponding negative control were transfected into ATDC5 normal and degenerative cells. Viability, migration, invasion, apoptosis, cycle, Bax, Bcl-2, P62, and Beclin1 expression levels were assessed using CCK8, wound healing assay, annexin V-FITC/PI staining, western blot, and qRT-PCR, respectively. RESULTS: The results revealed that the expression levels of MMP13, ADAMTS5, MMP3, and Col-X were increased as well as the expression levels of SOX-9 and Col-II were reduced in ATDC5 degenerative cells, indicating the degeneration model was constructed. We observed that miR-142-3p was decreased in ATDC5 degenerative cells and its suppression could promote ATDC5 cell degeneration. However, miR-142-3p overexpression could reverse the cell viability inhibition, as well as apoptosis and autophagy enhancement in ATDC5 degenerative cells. CONCLUSIONS: Our results proved that miR-142-3p may play an important role in disk degeneration. Further animal study is needed to illustrate the role of the miR-142-3p in IDD development.


Assuntos
Expressão Gênica , Estudos de Associação Genética , Degeneração do Disco Intervertebral/genética , MicroRNAs/genética , MicroRNAs/fisiologia , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Apoptose/genética , Autofagia/genética , Movimento Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , Regulação para Baixo/genética , Humanos , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , MicroRNAs/metabolismo
20.
ACS Biomater Sci Eng ; 7(3): 872-880, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33715371

RESUMO

The 3D printing technology with unique strategies for accurate fabrication of biomaterials in regenerative medicine has been widely applied in bone regeneration. However, the traditional 3D printing scaffolds are only stacked by solid struts without any hollow channel structures, which limits the new bone tissue formation. In this study, a special 3D scaffold with hollow channels and a micro-nano surface was prepared by a modified 3D printing strategy combined with the hydrothermal treatment approach. By regulating the reaction solution of hydrothermal treatment, the micro-nano structures formed on the surface of scaffolds can be successfully controlled. Moreover, the scaffolds have the ability to facilitate the attachment and proliferation of BMSCs after culturing for 1, 3, and 7 days in vitro. Interestingly, the in vivo results demonstrated that the hollow channels and the micro-nano surface present synergistic effects on bone regeneration. They both boost the new bone formation in femur defects in rabbits for 12 weeks after operation. The study demonstrates a 3D scaffold with special surface microstructures and hollow struts that can overcome the shortages of most traditional scaffolds and meanwhile improve the bioactivity of biomaterials for bone tissue engineering.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Animais , Materiais Biocompatíveis/farmacologia , Impressão Tridimensional , Coelhos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA