Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39089252

RESUMO

The Duffy antigen receptor is a seven-transmembrane (7TM) protein expressed primarily at the surface of red blood cells and displays strikingly promiscuous binding to multiple inflammatory and homeostatic chemokines. It serves as the basis of the Duffy blood group system in humans and also acts as the primary attachment site for malarial parasite Plasmodium vivax and pore-forming toxins secreted by Staphylococcus aureus. Here, we comprehensively profile transducer coupling of this receptor, discover potential non-canonical signaling pathways, and determine the cryoelectron microscopy (cryo-EM) structure in complex with the chemokine CCL7. The structure reveals a distinct binding mode of chemokines, as reflected by relatively superficial binding and a partially formed orthosteric binding pocket. We also observe a dramatic shortening of TM5 and 6 on the intracellular side, which precludes the formation of the docking site for canonical signal transducers, thereby providing a possible explanation for the distinct pharmacological and functional phenotype of this receptor.

2.
Neurochem Res ; 48(10): 2936-2968, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37278860

RESUMO

Despite ongoing advancements in research, the inability of therapeutics to cross the blood-brain barrier (BBB) makes the treatment of neurological disorders (NDs) a challenging task, offering only partial symptomatic relief. Various adverse effects associated with existing approaches are another significant barrier that prompts the usage of structurally diverse phytochemicals as preventive/therapeutic lead against NDs in preclinical and clinical settings. Despite numerous beneficial properties, phytochemicals suffer from poor pharmacokinetic profile which limits their pharmacological activity and necessitates the utility of nanotechnology for efficient drug delivery. Nanocarriers have been shown to be proficient carriers that can enhance drug delivery, bioavailability, biocompatibility, and stability of phytochemicals. We, thus, conducted a meticulous literature survey using several electronic databases to gather relevant studies in order to provide a comprehensive summary about the use of nanocarriers in delivering phytochemicals as a treatment approach for NDs. Additionally, the review highlights the mechanisms of drug transport of nanocarriers across the BBB and explores their potential future applications in this emerging field.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Nanopartículas/química , Encéfalo , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia
3.
Bioorg Chem ; 129: 106202, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272252

RESUMO

Efforts have been devoted for the discovery and development of positive allosteric modulators (PAMs) of 5-HT2CR because of their potential advantages over the orthosteric agonist like Lorcaserin that was withdrawn from the market. On the other hand, pursuing a positive ago-allosteric modulator (PAAM) is considered as beneficial particularly when an agonist is not capable of affecting the potency of the endogenous agonist sufficiently. In search of a suitable PAAM of 5-HT2CR we adopted an in silico based approach that indicated the potential of the 3-(1-hydroxycycloalkyl) substituted isoquinolin-1-one derivatives against the 5-HT2CR as majority of these molecules interacted with the site other than that of Lorcaserin with superior docking scores. These compounds along with the regioisomeric 3-methyleneisoindolin-1-one derivatives were prepared via the Cu(OAc)2 catalyzed coupling of 2-iodobenzamide with 1-ethynylcycloalkanol under ultrasound irradiation. According to the in vitro studies, most of these compounds were not only found to be potent and selective agonists but also emerged as PAAM of 5-HT2CR whereas Lorcaserin did not show PAAM activities. According to the SAR study the isoquinolin-1(2H)-ones appeared as better PAAM than isoindolin-1-ones whereas the presence of hydroxyl group appeared to be crucial for the activity. With the potent PAAM activity for 5-HT2CR (EC50 = 1 nM) and 107 and 86-fold selectivity towards 5-HT2C over 5-HT2A and 5-HT2B the compound 4i was identified as a hit molecule. The compound showed good stability in male BALB/c mice brain homogenate (∼85 % remaining after 2 h), moderate stability in the presence of rat liver microsomes (42 % remaining after 1 h) and acceptable PK properties with fast reaching in the brain maintaining âˆ¼ 1:1 brain/plasma concentration ratio. The compound at a dose of 50 mg/kg exhibited decreased trend in the food intake starting from day 3 in S.D. rats, which reached significant by 5th day, and the effect was comparable to Lorcaserin (10 mg/kg) on day 5. Thus, being the first example of PAAM of 5-HT2CR the compound 4i is of further medicinal interest.


Assuntos
Indóis , Isoquinolinas , Agonistas do Receptor 5-HT2 de Serotonina , Animais , Masculino , Camundongos , Ratos , Encéfalo , Agonistas do Receptor 5-HT2 de Serotonina/síntese química , Agonistas do Receptor 5-HT2 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Camundongos Endogâmicos BALB C , Isoquinolinas/síntese química , Isoquinolinas/química , Isoquinolinas/farmacologia , Indóis/síntese química , Indóis/química , Indóis/farmacologia
4.
Neurobiol Dis ; 118: 94-107, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981843

RESUMO

GPR40 (Free fatty acid receptor 1) has emerged as an important therapeutic target for diabetes. Several studies have demonstrated the association of comorbid psychiatric conditions with decreased n-3 polyunsaturated fatty acids, which may act as an agonist for GPR40. In this study, we for the first time provide evidence of reduced GPR40 signaling in the hippocampus and cortex which may be a critical underlying mechanism mediating cognitive deficits in diabesity (diabetes and obesity together). Specifically, we showed decreased GPR40 and brain-derived neurotrophic factor (BDNF) expression in the brain regions of high-fat-diet-induced obese and db/db mice. Next, we demonstrated that chronic treatment with docosahexaenoic acid (DHA) or the synthetic GPR40 agonist, GW9508, significantly alleviates cognitive functions in mice, which correlates with increased BDNF expression in the hippocampus. This supports the hypothesis that DHA improves cognitive function in diabesity via GPR40 agonism. We also showed that DHA specifically activates GPR40 and modulates BDNF expression in primary cortical neurons mediated by the extracellular receptor kinase (ERK) and P38-mitogen-activated protein kinase (MAPK) pathways. Finally, the central nervous system (CNS)-specific blockade of GPR40 signaling abrogated the memory potentiating effects of DHA, and induction of BDNF expression in the hippocampus. Thus, we provided evidence that DHA stimulation of GPR40 mediate some of DHA's beneficial effects in metabolic syndrome and identify GPR40 as a viable therapeutic target for the treatment of CNS-related comorbidities associated with diabesity.


Assuntos
Aprendizagem por Associação/fisiologia , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Ácidos Docosa-Hexaenoicos/uso terapêutico , Transtornos da Memória/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Animais , Aprendizagem por Associação/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/agonistas , Células Cultivadas , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Docosa-Hexaenoicos/farmacologia , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Receptores Acoplados a Proteínas G/agonistas
5.
Mol Pharm ; 13(9): 3234-40, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27518323

RESUMO

Intranasal administration can potentially deliver drugs to the brain because of the proximity of the delivery site to the olfactory lobe. We prepared triturates of micronized or crystalline zolmitriptan with a GRAS substance, nicotinamide, to form a eutectic. We characterized the formulation using differential scanning calorimetry, powder X-ray diffraction, and FTIR spectroscopy to confirm its eutectic nature and generated a phase diagram. The eutectic formulation was aerosolized using an in-house insufflator into the nares of rats. Groups of rats received zolmitriptan intravenously or intranasally, or intranasal eutectic formulation. Zolmitriptan was estimated in the olfactory lobe, cerebral cortex, cerebellum, and blood plasma at different time-points by LC-MS. Pharmacokinetics in these tissues indicated the superiority of the intranasal eutectic formulation for brain targeting when compared with results of IV solution and intranasal pure zolmitriptan powder. Enhancement of nose-to-brain transport is likely to have resulted from more rapid dissolution of the eutectic as compared to pure drug.


Assuntos
Administração Intranasal/métodos , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Mucosa Nasal/metabolismo , Oxazolidinonas/administração & dosagem , Oxazolidinonas/farmacocinética , Triptaminas/administração & dosagem , Triptaminas/farmacocinética , Animais , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Tamanho da Partícula , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem , Difração de Raios X
6.
Am J Pathol ; 182(3): 776-85, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23291213

RESUMO

Intestinal ischemia has a wide variety of causes, including, but not limited to, atherosclerosis, thrombosis, hypotension, and chronic inflammation. In severe cases, ischemic injury can result in death. µ-Opioid receptor (MOR) signaling has previously been shown to protect against chemically induced colitis, but the cellular origin of this effect remains unknown. Herein, we evaluated the role of intestinal epithelial cell (IEC)-derived MOR signaling in host responses to ischemia/reperfusion-induced injury. Ileal ischemia was accomplished through obstruction of the distal branches of the superior mesenteric artery (60 minutes) and reperfusion for 90 minutes (ischemia-reperfusion). Floxed-MOR mice were crossed to Villin-cre transgenic mice to selectively delete the MOR gene in IECs (MOR(IEC-/-)). Radio-ligand binding assays demonstrated selective loss of MOR signaling in IECs of MOR(IEC-/-) mice. The s.c. administration of the MOR agonist, [D-Arg2, Lys4] dermorphin (1-4) amide (DALDA), 10 minutes before surgery protected against both ischemic and reperfusion phases of intestinal injury, an effect abolished in MOR(IEC-/-) mice. This cytoprotective effect was associated with enterocyte-mediated phosphoinositide 3-kinase (PI3K)/glycogen synthase kinase 3ß signaling and decreased apoptosis, as determined by IHC and caspase-3 processing. PI3K blockade with Ly294002 resulted in loss of MOR-mediated cytoprotective function. Together, these data show that IEC-derived µ-opioid signaling uses the PI3K pathway to protect cells against the damaging effect of ischemia-reperfusion. Targeting MOR signaling may represent a novel mean to alleviate intestinal injury and promote the wound-healing response.


Assuntos
Células Epiteliais/patologia , Intestinos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Opioides mu/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Deleção de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Intestinos/irrigação sanguínea , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 108(45): 18488-93, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22025698

RESUMO

Elucidating the key signal transduction pathways essential for both antipsychotic efficacy and side-effect profiles is essential for developing safer and more effective therapies. Recent work has highlighted noncanonical modes of dopamine D(2) receptor (D(2)R) signaling via ß-arrestins as being important for the therapeutic actions of both antipsychotic and antimanic agents. We thus sought to create unique D(2)R agonists that display signaling bias via ß-arrestin-ergic signaling. Through a robust diversity-oriented modification of the scaffold represented by aripiprazole (1), we discovered UNC9975 (2), UNC0006 (3), and UNC9994 (4) as unprecedented ß-arrestin-biased D(2)R ligands. These compounds also represent unprecedented ß-arrestin-biased ligands for a G(i)-coupled G protein-coupled receptor (GPCR). Significantly, UNC9975, UNC0006, and UNC9994 are simultaneously antagonists of G(i)-regulated cAMP production and partial agonists for D(2)R/ß-arrestin-2 interactions. Importantly, UNC9975 displayed potent antipsychotic-like activity without inducing motoric side effects in inbred C57BL/6 mice in vivo. Genetic deletion of ß-arrestin-2 simultaneously attenuated the antipsychotic actions of UNC9975 and transformed it into a typical antipsychotic drug with a high propensity to induce catalepsy. Similarly, the antipsychotic-like activity displayed by UNC9994, an extremely ß-arrestin-biased D(2)R agonist, in wild-type mice was completely abolished in ß-arrestin-2 knockout mice. Taken together, our results suggest that ß-arrestin signaling and recruitment can be simultaneously a significant contributor to antipsychotic efficacy and protective against motoric side effects. These functionally selective, ß-arrestin-biased D(2)R ligands represent valuable chemical probes for further investigations of D(2)R signaling in health and disease.


Assuntos
Antipsicóticos/farmacologia , Arrestinas/metabolismo , Agonistas de Dopamina/farmacologia , Receptores de Dopamina D2/agonistas , Transdução de Sinais , Animais , Linhagem Celular , AMP Cíclico/biossíntese , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Dopamina D2/metabolismo , beta-Arrestina 2 , beta-Arrestinas
8.
Front Microbiol ; 14: 986729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819024

RESUMO

The emergence and rapid evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused a global crisis that required a detailed characterization of the dynamics of mutational pattern of the viral genome for comprehending its epidemiology, pathogenesis and containment. We investigated the molecular evolution of the SASR-CoV-2 genome during the first, second and third waves of COVID-19 in Uttar Pradesh, India. Nanopore sequencing of the SARS-CoV-2 genome was undertaken in 544 confirmed cases of COVID-19, which included vaccinated and unvaccinated individuals. In the first wave (unvaccinated population), the 20A clade (56.32%) was superior that was replaced by 21A Delta in the second wave, which was more often seen in vaccinated individuals in comparison to unvaccinated (75.84% versus 16.17%, respectively). Subsequently, 21A delta got outcompeted by Omicron (71.8%), especially the 21L variant, in the third wave. We noticed that Q677H appeared in 20A Alpha and stayed up to Delta, D614G appeared in 20A Alpha and stayed in Delta and Omicron variants (got fixed), and several other mutations appeared in Delta and stayed in Omicron. A cross-sectional analysis of the vaccinated and unvaccinated individuals during the second wave revealed signature combinations of E156G, F157Del, L452R, T478K, D614G mutations in the Spike protein that might have facilitated vaccination breach in India. Interestingly, some of these mutation combinations were carried forward from Delta to Omicron. In silico protein docking showed that Omicron had a higher binding affinity with the host ACE2 receptor, resulting in enhanced infectivity of Omicron over the Delta variant. This work has identified the combinations of key mutations causing vaccination breach in India and provided insights into the change of [virus's] binding affinity with evolution, resulting in more virulence in Delta and more infectivity in Omicron variants of SARS-CoV-2. Our findings will help in understanding the COVID-19 disease biology and guide further surveillance of the SARS-CoV-2 genome to facilitate the development of vaccines with better efficacies.

9.
Nat Commun ; 14(1): 4808, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558722

RESUMO

Chemokine receptors constitute an important subfamily of G protein-coupled receptors (GPCRs), and they are critically involved in a broad range of immune response mechanisms. Ligand promiscuity among these receptors makes them an interesting target to explore multiple aspects of biased agonism. Here, we comprehensively characterize two chemokine receptors namely, CXCR4 and CXCR7, in terms of their transducer-coupling and downstream signaling upon their stimulation by a common chemokine agonist, CXCL12, and a small molecule agonist, VUF11207. We observe that CXCR7 lacks G-protein-coupling while maintaining robust ßarr recruitment with a major contribution of GRK5/6. On the other hand, CXCR4 displays robust G-protein activation as expected but exhibits significantly reduced ßarr-coupling compared to CXCR7. These two receptors induce distinct ßarr conformations even when activated by the same agonist, and CXCR7, unlike CXCR4, fails to activate ERK1/2 MAP kinase. We also identify a key contribution of a single phosphorylation site in CXCR7 for ßarr recruitment and endosomal localization. Our study provides molecular insights into intrinsic-bias encoded in the CXCR4-CXCR7 system with broad implications for drug discovery.


Assuntos
Receptores CXCR , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Proteínas de Ligação ao GTP , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quimiocina CXCL12/metabolismo
10.
Prog Mol Biol Transl Sci ; 193(1): 99-117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36357081

RESUMO

Pain sensation is a normal physiological response to alert and prevent further tissue damage. It involves the perception of external stimuli by somatosensory neurons, then transmission of the message to various other types of neurons present in the spinal cord and brain to generate an appropriate response. Currently available analgesics exhibit very modest efficacy, and that too in only a subset of patients with chronic pain conditions, particularly neuropathic pain. The G protein-coupled receptors (GPCRs) are expressed on presynaptic, postsynaptic terminals, and soma of somatosensory neurons, which binds to various types of ligands to modulate neuronal activity and thus pain sensation in both directions. Fundamentally, neuropathic pain arises due to aberrant neuronal plasticity, which includes the sensitization of peripheral primary afferents (dorsal root ganglia and trigeminal ganglia) and the sensitization of central nociceptive neurons in the spinal cord or trigeminal nucleus or brain stem and cortex. Owing to the expression profiles of GPCRs in somatosensory neurons and other neuroanatomical regions involved in pain processing and transmission, this article shall focus only on four families of GPCRs: 1- Opioid receptors, 2-Cannabinoid receptors, 3-Adenosine receptors, and 4-Chemokine receptors.


Assuntos
Neuralgia , Humanos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Gânglios Espinais/metabolismo , Medula Espinal/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
11.
J Pharmacol Exp Ther ; 339(1): 99-105, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21737536

RESUMO

Dysregulation of the 5-HT(2A) receptor is implicated in both the etiology and treatment of schizophrenia. Although the essential role of 5-HT(2A) receptors in atypical antipsychotic drug actions is widely accepted, the contribution of 5-HT(2A) down-regulation to their efficacy is not known. We hypothesized that down-regulation of cortical 5-HT(2A) receptors contributes to the therapeutic action of atypical antipsychotic drugs. To test this hypothesis, we assessed the effect of chronically administered antipsychotics (clozapine, olanzapine, and haloperidol) and several 5-HT(2A) antagonists [ketanserin, altanserin, α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol (M100907), α-phenyl-1-(2-phenylethyl)-4-piperidinemethano (M11939), 4-[(2Z)-3-{[2-(dimethylamino)ethoxy]amino}-3-(2-fluorophenyl)prop-2-en-1-ylidene]cyclohexa-2,5-dien-1-one (SR46349B), and pimavanserin], on the phencyclidine (PCP)-induced hyperlocomotor response and cortical 5-HT(2A) receptor levels in C57BL/6J mice. Clozapine and olanzapine, but not haloperidol, induced receptor down-regulation and attenuated PCP-induced locomotor responses. Of the selective 5-HT(2A) antagonists tested, only ketanserin caused significant receptor protein down-regulation, whereas SR46349B up-regulated 5-HT(2A) receptors and potentiated PCP-hyperlocomotion; the other 5-HT(2A) receptor antagonists were without effect. The significance of these findings with respect to atypical antipsychotic drug action is discussed.


Assuntos
Receptor 5-HT2A de Serotonina/biossíntese , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Benzodiazepinas/farmacologia , Western Blotting , Clozapina/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Haloperidol/farmacologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Olanzapina , Fenciclidina/farmacologia , Ensaio Radioligante , Receptor 5-HT2A de Serotonina/genética , Agonistas do Receptor de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Comportamento Estereotipado/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
12.
ChemMedChem ; 16(12): 1917-1926, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33599108

RESUMO

The synthesis of 5-formyl-6-aryl-6H-indolo[3,2,1-de][1,5] naphthyridine-2-carboxylates by reaction between 1-formyl-9H-ß-carbolines and cinnamaldehydes in the presence of pyrrolidine in water with microwave irradiation is described. Pharmacophoric modification of the formyl group offered several new fused ß-carboline derivatives, which were investigated for their κ-opioid receptor (KOR) agonistic activity. Two compounds 4 a and 4 c produced appreciable agonist activity on KOR with EC50 values of 46±19 and 134±9 nM, respectively. Moreover, compound-induced KOR signaling studies suggested both compounds to be extremely G-protein-biased agonists. The analgesic effect of 4 a was validated by the increase in tail flick latency in mice in a time-dependent manner, which was completely blocked by the KOR-selective antagonist norBNI. Moreover, unlike U50488, an unbiased full KOR agonist, 4 a did not induce sedation. The docking of 4 a with the human KOR was studied to rationalize the result.


Assuntos
Analgésicos/farmacologia , Carbolinas/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor/tratamento farmacológico , Receptores Opioides kappa/agonistas , Analgésicos/síntese química , Analgésicos/química , Animais , Carbolinas/síntese química , Carbolinas/química , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Antagonistas de Entorpecentes/síntese química , Antagonistas de Entorpecentes/química
13.
J Neurosci ; 29(22): 7124-36, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19494135

RESUMO

Here, we report that postsynaptic density protein of 95 kDa (PSD-95), a postsynaptic density scaffolding protein, classically conceptualized as being essential for the regulation of ionotropic glutamatergic signaling at the postsynaptic membrane, plays an unanticipated and essential role in mediating the actions of hallucinogens and atypical antipsychotic drugs at 5-HT(2A) and 5-HT(2C) serotonergic G-protein-coupled receptors. We show that PSD-95 is crucial for normal 5-HT(2A) and 5-HT(2C) expression in vivo and that PSD-95 maintains normal receptor expression by promoting apical dendritic targeting and stabilizing receptor turnover in vivo. Significantly, 5-HT(2A)- and 5-HT(2C)-mediated downstream signaling is impaired in PSD-95(null) mice, and the 5-HT(2A)-mediated head-twitch response is abnormal. Furthermore, the ability of 5-HT(2A) inverse agonists to normalize behavioral changes induced by glutamate receptor antagonists is abolished in the absence of PSD-95 in vivo. These results demonstrate that PSD-95, in addition to the well known role it plays in scaffolding macromolecular glutamatergic signaling complexes, profoundly modulates metabotropic 5-HT(2A) and 5-HT(2C) receptor function.


Assuntos
Antipsicóticos/farmacologia , Alucinógenos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Neurônios/efeitos dos fármacos , Receptores de Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Proteína 4 Homóloga a Disks-Large , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Guanilato Quinases , Hipotermia/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirazinas/farmacologia , RNA Mensageiro/metabolismo , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Receptores de Serotonina/efeitos dos fármacos , Receptores de Serotonina/genética , Antagonistas da Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Transdução Genética
14.
Mol Pharmacol ; 76(4): 710-22, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19570945

RESUMO

Drug-induced valvular heart disease (VHD) is a serious side effect of a few medications, including some that are on the market. Pharmacological studies of VHD-associated medications (e.g., fenfluramine, pergolide, methysergide, and cabergoline) have revealed that they and/or their metabolites are potent 5-hydroxytryptamine(2B) (5-HT(2B)) receptor agonists. We have shown that activation of 5-HT(2B) receptors on human heart valve interstitial cells in vitro induces a proliferative response reminiscent of the fibrosis that typifies VHD. To identify current or future drugs that might induce VHD, we screened approximately 2200 U.S. Food and Drug Administration (FDA)-approved or investigational medications to identify 5-HT(2B) receptor agonists, using calcium-based high-throughput screening. Of these 2200 compounds, 27 were 5-HT(2B) receptor agonists (hits); 14 of these had previously been identified as 5-HT(2B) receptor agonists, including seven bona fide valvulopathogens. Six of the hits (guanfacine, quinidine, xylometazoline, oxymetazoline, fenoldopam, and ropinirole) are approved medications. Twenty-three of the hits were then "functionally profiled" (i.e., assayed in parallel for 5-HT(2B) receptor agonism using multiple readouts to test for functional selectivity). In these assays, the known valvulopathogens were efficacious at concentrations as low as 30 nM, whereas the other compounds were less so. Hierarchical clustering analysis of the pEC(50) data revealed that ropinirole (which is not associated with valvulopathy) was clearly segregated from known valvulopathogens. Taken together, our data demonstrate that patterns of 5-HT(2B) receptor functional selectivity might be useful for identifying compounds likely to induce valvular heart disease.


Assuntos
Doenças das Valvas Cardíacas/microbiologia , Agonistas do Receptor 5-HT2 de Serotonina , Agonistas do Receptor de Serotonina/uso terapêutico , Linhagem Celular , Análise por Conglomerados , Humanos , Fosforilação , Agonistas do Receptor de Serotonina/efeitos adversos , Agonistas do Receptor de Serotonina/farmacologia , Estados Unidos , United States Food and Drug Administration
15.
Psychoneuroendocrinology ; 101: 128-137, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30458370

RESUMO

The last two decades of research has established histamine (HA) as a neurotransmitter. Since H3R antagonists are known to modulate several neurotransmitters besides HA, H3R antagonists have shown potential for the treatment of different central nervous system disorders, including depression. However, molecular mechanisms underlying the beneficial effects of H3R antagonism in depression are not clear, yet. In the present study, we investigated the antidepressant potential of ciproxifan, a selective H3R antagonist, in chronic unpredictable stress (CUS) model of depression in C57BL/6 J mice. We observed that chronic treatment of CUS mice with ciproxifan (3 mg/kg i.p.; for three weeks) alleviates depression-like symptoms such as helplessness measured by forced swim and tail suspension test (FST and TST), anhedonia measured by sucrose preference test (SPT) and social deficit measured in social behavior test. Chronic ciproxifan treatment restored CUS induced BDNF expression in the prefrontal cortex (PFC) and hippocampus. We also observed that ciproxifan modulates CUS induced NUCB2/nesfatin-1 and CRH expression in the hypothalamus and plasma corticosterone. We also determined the direct effect of HA on BDNF expression in neurons by western blotting and immunocytochemistry, and found that HA significantly induced BDNF expression, which was blocked by the H4R selective antagonist, but not by other HA receptor selective antagonists. Furthermore, ciproxifan significantly modulated NMDA glutamate receptor subunits NR2B and NR2A. Thus, these results suggest that increased HA signaling in the brain produces antidepressant-like effects in mice and modulates BDNF expression and HPA-axis.


Assuntos
Depressão/tratamento farmacológico , Antagonistas dos Receptores Histamínicos/farmacologia , Receptores Histamínicos H3/metabolismo , Animais , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/sangue , Depressão/metabolismo , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Histamina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo
16.
Eur J Med Chem ; 164: 499-516, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30622024

RESUMO

Allosteric modulators of G-protein-coupled receptors have lately gained significant traction in drug discovery. Recent studies have shown that allosteric modulation of serotonin 2C receptor (5-HT2C) as a viable strategy for the treatment of various central nervous system (CNS) disorders. Considering the critical role of 5-HT2C in the modulation of appetite, a selective positive allosteric modulator (PAM) of 5-HT2C offers a new opportunity for anti-obesity therapeutic development. In this study, phenyl cyclopropyl-linked N-heterocycles were synthesized and evaluated at 5-HT2C for agonist and PAM activity. Our study shows that imidazole linked phenyl cyclopropyl methanones has PAM activity on both 5-HT2C and serotonin 2B receptor (5-HT2B). Interestingly, piperazine linked phenyl cyclopropyl methanones (58) was active as PAM of 5-HT2C (increased the Emax of 5-HT to 139%), and as negative allosteric modulator (NAM) of 5-HT2B (decreases EC50 of 5-HT 10 times without affecting Emax). Similar effect of compound 58 was observed with synthetic orthosteric agonist lorcaserin on 5-HT2B. Molecular docking study revealed that all active compounds were binding to the predicted allosteric site on 5-HT2C and shared a common interacting residues. Finally, compound 58 suppressed food intake in Sprague Dawley (SD) rats similar to lorcaserin after i.c.v. administration. Therefore, these results suggest that piperazine moiety is essential for dual activity (PAM & NAM) of compounds 58, and supports the hypothesis of 5-HT2C PAM for the treatment of obesity similar to the full agonist.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Piperazina/farmacologia , Receptor 5-HT2B de Serotonina/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Animais , Ingestão de Alimentos/efeitos dos fármacos , Compostos Heterocíclicos/síntese química , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Piperazina/química , Ratos , Ratos Sprague-Dawley
17.
J Med Chem ; 62(9): 4638-4655, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30998358

RESUMO

The histamine 3 receptor (H3R) is a presynaptic receptor, which modulates several neurotransmitters including histamine and various essential physiological processes, such as feeding, arousal, cognition, and pain. The H3R is considered as a drug target for the treatment of several central nervous system disorders. We have synthesized and identified a novel series of 4-aryl-6-methyl-5,6,7,8-tetrahydroquinazolinamines that act as selective H3R antagonists. Among all the synthesized compounds, in vitro and docking studies suggested that the 4-methoxy-phenyl-substituted tetrahydroquinazolinamine compound 4c has potent and selective H3R antagonist activity (IC50 < 0.04 µM). Compound 4c did not exhibit any activity on the hERG ion channel and pan-assay interference compounds liability. Pharmacokinetic studies showed that 4c crosses the blood brain barrier, and in vivo studies demonstrated that 4c induces anorexia and weight loss in obese, but not in lean mice. These data reveal the therapeutic potential of 4c as an anti-obesity candidate drug via antagonizing the H3R.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Obesidade/tratamento farmacológico , Quinazolinas/uso terapêutico , Receptores Histamínicos H3/metabolismo , Animais , Fármacos Antiobesidade/síntese química , Fármacos Antiobesidade/farmacocinética , Glicemia/metabolismo , Dieta Hiperlipídica , Células HEK293 , Antagonistas dos Receptores Histamínicos H3/síntese química , Antagonistas dos Receptores Histamínicos H3/farmacocinética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Proteínas Proto-Oncogênicas c-fos/metabolismo , Quinazolinas/síntese química , Quinazolinas/farmacocinética , Estereoisomerismo , Relação Estrutura-Atividade , Redução de Peso/efeitos dos fármacos
18.
Neuropharmacology ; 55(6): 961-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18640136

RESUMO

5-HT(2A) serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT(2A) serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT(2A) receptors and our recent studies suggest multiple scaffolds exist for 5-HT(2A) receptors including PSD95, arrestin, and caveolin. In addition, a novel interaction has emerged between p90 ribosomal S6 kinase and 5-HT(2A) receptors which attenuates receptor signaling. This article reviews our recent studies and emphasizes the role of scaffolding proteins and kinases in the regulation of 5-HT(2A) trafficking, targeting and signaling.


Assuntos
Arrestina/metabolismo , Caveolinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptor 5-HT2A de Serotonina/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Endocitose/fisiologia , Humanos , Modelos Biológicos , Transporte Proteico/fisiologia
19.
Brain Res ; 1230: 13-26, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18656460

RESUMO

A clonal human embryonic kidney (HEK) 293 cell line was established that stably expressed the rat kappa-opioid receptor (rKOR) with a FLAG epitope at the amino terminus. The Kd for [3H]diprenorphine was 1.1+/-0.2 nM, and the Bmax was 2.6+/-0.4 pmol/mg. Dynorphin A (1-13), U69,593 and naloxone competitively inhibited [3H]diprenorphine binding with Ki values of 2.0, 18 and 18 nM, respectively, in good agreement with previously reported affinities for the unmodified receptor. U69,593 stimulated [35S]GTPgammaS binding in a concentration-dependent manner and caused phosphorylation of mitogen-activated protein (MAP) kinase, indicating that the activated epitope-tagged receptor triggered appropriate signaling pathways. Immunoblot analysis demonstrated that two immunoreactive receptor species with apparent molecular masses of 42 and 52 kDa were expressed. Previous studies indicated that the 42 kDa protein was localized intracellularly and was a precursor of the 52 kDa receptor, which was present at the cell surface. rKOR was extracted from transfected HEK 293 cell membranes with n-dodecyl-beta-D-maltopyranoside. Sequential use of wheat germ agglutinin chromatography, Sephacryl S300 gel filtration chromatography, anti-FLAG immunoaffinity chromatography and SDS/PAGE permitted purification of the 52 kDa receptor. MALDI-TOF mass spectrometry was used to identify peptides derived from rKOR following sequential in-gel digestion with trypsin and cyanogen bromide. Eighteen rKOR peptides were detected, corresponding to 27.1% coverage of the receptor. Precursor-selective MS/MS confirmed the identity of most of these peptides. In addition, we have identified heat shock protein 70 (HSP70) as a rKOR-interacting protein.


Assuntos
Receptores Opioides kappa/isolamento & purificação , Sequência de Aminoácidos , Western Blotting , Linhagem Celular , Cromatografia de Afinidade , Cromatografia em Agarose , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Proteínas de Choque Térmico HSP70/análise , Humanos , Imunoquímica , Imunoprecipitação , Espectrometria de Massas , Membranas/química , Membranas/metabolismo , Hidrolisados de Proteína/química , Ensaio Radioligante , Receptores Opioides kappa/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Aglutininas do Germe de Trigo/química
20.
Eur J Med Chem ; 152: 148-159, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29704723

RESUMO

Four series of structurally related ß-lactams, 2,5-pyrrolidinediones, azaspirodecatrienediones (ASDT) and dihydropyrroloquinoxalinetriones (DPQT) were synthesized by utilizing post-Ugi modifications in one-pot, and their activity towards human histamine-3 receptor (H3R) was evaluated. Out of 94 compounds, screened against histamine-3 receptor (H3R), 21 compounds showed high H3R selective agonist property with EC50 values ranging from 187 nM to 0.1 nM, whereas none of the compound was found to have the affinity towards other receptors of histamine family such as histamine H1, H2, and H4 receptor. All active compounds have no assay interference activity as determined by in-silico analysis and receptor independent luciferase assay and cell cytotoxicity assay. Given the important role of H3R in hypophagia, we also evaluated the in vivo effect of the representative compound 6k on the cumulative food intake in diet induce obese C57BL6/J mice. Interestingly, we observed that single dose administration (20 mg/kg, intraperitoneal injection) of 6k significantly suppressed cumulative food intake, while no significant effect was observed at 10 mg/kg. These results suggest that ß-lactams, 2,5-pyrrolidinediones, azaspirodecatrienediones (ASDT) and dihydropyrroloquinoxalinetriones (DPQT) could be useful for the development of anti-obesity candidate drugs.


Assuntos
Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Pirrolidinonas/farmacologia , Receptores Histamínicos H3/metabolismo , beta-Lactamas/farmacologia , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/química , Sobrevivência Celular , Dieta Hiperlipídica/efeitos adversos , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Células HEK293 , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Obesidade/induzido quimicamente , Obesidade/metabolismo , Pirrolidinonas/administração & dosagem , Pirrolidinonas/química , Relação Estrutura-Atividade , beta-Lactamas/administração & dosagem , beta-Lactamas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA