RESUMO
The present study aimed to investigate the chemical constituents of different extracts from aerial parts of A. absinthium and to evaluate their antioxidant and enzyme inhibition activity. Extracts were prepared by maceration, infusion or Soxhlet techniques. Results showed that the highest total phenolic and flavonoids contents was recorded respectively from the hexane extract prepared by maceration and ethyl acetate extract obtained by Soxhlet method. The characteristic compounds of Artemisia species artemetin, casticin, sesartemin and yangambin in addition to coumarins were identified in all extracts. Aqueous extract obtained by infusion exerted the highest radical scavenging and ions reducing properties while that prepared by maceration displayed the highest chelating power. Methanol extracts obtained by the two methods of extraction exerted the highest anti-Tyr activity while that obtained by maceration showed the best α-glucosidase inhibition activity. These findings indicated that A. absinthium is a rich source of bioactive molecules with possible therapeutic applications.
Assuntos
Antioxidantes , Artemisia absinthium , Extratos Vegetais , Solventes , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Artemisia absinthium/química , Solventes/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , alfa-Glucosidases/metabolismo , Fenóis/farmacologia , Fenóis/química , Fenóis/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Componentes Aéreos da Planta/química , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificaçãoRESUMO
Many Vicia species (Fabaceae) were proven to possess bioactive compounds with potential health beneficial properties. The present study was designed to determine the phenolic constituents, antioxidant and enzyme inhibition activities of aerial parts and seed of V.â peregrina. Hexane, ethyl acetate and methanol extracts were prepared by maceration and aqueous extract by infusion. The chemical compositions of the extracts were determined using HPLC-MS/MS technology. The antioxidant activities were examined using various assays including free radical scavenging (ABTS and DPPH), reducing ability (CUPRAC and FRAP), metal chelation, and phosphomolybdenum. The enzyme inhibitory effects were investigated against cholinesterase, tyrosinase, amylase and glucosidase. The highest total phenolics and flavonoids contents were recorded in the methanol extracts of the seed (45.42â mg GAE/g) and aerial parts (40.33â mg RE/g) respectively. The aerial parts were characterized by higher accumulation of chlorogenic acid (9893.86â µg g-1 ), isoquercitrin (9400.33â µg g-1 ), delphindin 3,5 diglucoside (9113.28â µg g-1 ), hyperoside (6337.09â µg g-1 ), rutin (3489.83â µg g-1 ) and kaempferol-3-glucoside (2872.84â µg g-1 ). Generally, the methanol and aqueous extracts of the two studied parts exerted the best antioxidant activity with highest anti-DPPH (61.99â mg TE/g), anti-ABTS (101.80â mg TE/g) and Cu++ (16169â mg TE/g) and Fe+++ (172,36â mg TE/g) reducing capacity were recorded from the seed methanol extract. Methanol extract of the seed showed the best anti-tyrosinase activity (75.86â mg KAE/g). These results indicated that V. peregrina is rich with bioactive phenolics suggesting their use in different health promoting applications.
Assuntos
Antioxidantes , Vicia , Antioxidantes/farmacologia , Antioxidantes/química , Metanol/química , Hipoglicemiantes/farmacologia , Espectrometria de Massas em Tandem , Turquia , Espectrometria de Massa com Cromatografia Líquida , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/químicaRESUMO
Eremurus spectabilis is widespread and used primarily for medicinal and culinary purposes. This study aimed to evaluate the chemical composition, antiradical and antioxidant activities, enzyme inhibitory activities, and anti-inflammatory properties of various extracts from the aerial parts of E. spectabilis. Various assays were used to investigate the antioxidant and enzyme inhibitory properties. The chemical composition of the tested extracts was analyzed using High-Performance Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry (HPLC-ESI-MS/MS). Additionally, the extracts were tested on isolated mouse colon tissue challenged with E. coli lipopolysaccharide (LPS) to replicate the inflammation and oxidative stress burden characteristic of inflammatory bowel diseases. In the chemical composition, vanillic, ferulic, 4-hydroxybenzoic acids were the prominent compounds. The greatest antioxidant activity was observed in the methanol and water extracts from the aerial parts. Enzyme inhibition tests showed that the ethyl acetate extract had the highest anti-acetylcholinesterase activity. The gene expression of pro-inflammatory cyclooxygenase-2 (COX-2) and pro-oxidant inducible nitric oxide synthase (iNOS) biomarkers were assayed. Among the extracts, the methanol extract was the most effective in blunting LPS-induced gene expression of COX-2. E. spectabilis may serve as a valuable source of phytochemicals for combating oxidative stress and inflammation-driven diseases, with a particular emphasis on colon inflammatory condition.
RESUMO
Tanacetum nitens (Boiss. & Noë) Grierson is an aromatic perennial herb used in Turkish traditional medicine to treat headache, fever, and skin diseases. This study aimed to investigate the chemical composition, antioxidant, enzyme inhibition, and cytotoxic properties of T. nitens aerial parts. Organic solvent extracts were prepared by sequential maceration in hexane, dichloromethane, ethyl acetate, and methanol while aqueous extracts were obtained by maceration or infusion. Nuclear magnetic resonance (NMR) and LC-DAD-MS analysis allowed the identification and quantification of different phytoconstituents including parthenolide, tanacetol B, tatridin B, quinic acid derivatives, ß-sitosterol, and glycoside derivatives of quercetin and luteolin. The type and amount of these phytochemicals recovered by each solvent were variable and significant enough to impact the biological activities of the plant. Methanolic and aqueous extracts displayed the highest scavenging and ions-reducing properties while the dichloromethane and ethyl acetate extracts exerted the best total antioxidant activity and metal chelating power. Results of enzyme inhibition activity showed that the hexane, ethyl acetate, and dichloromethane extracts had comparable anti-acetylcholinesterase activity and the latter extract revealed the highest anti-butyrylcholinesterase activity. The best α-amylase and α-glucosidase inhibition activities were obtained from the hexane extract. The dichloromethane and ethyl acetate extracts exhibited the highest cytotoxic effect against the prostate carcinoma DU-145 cells. In conclusion, these findings indicated that T. nitens can be a promising source of biomolecules with potential therapeutic applications.
Assuntos
Antioxidantes , Extratos Vegetais , Tanacetum , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Humanos , Tanacetum/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Componentes Aéreos da Planta/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Relação Dose-Resposta a Droga , Solventes/química , Sobrevivência Celular/efeitos dos fármacosRESUMO
The chemical composition as well as antioxidant, antiproliferative, and enzyme inhibition activities of extracts from aerial parts of Thymus leucostomus H ausskn. & V elen. obtained with hexane, methanol, and water were evaluated. Results showed that the methanol extract had significantly (p < 0.05) the highest total phenolic content (TPC; 107.80 mg GAE/g) and total flavonoids content (TFC; 25.21 mg RE/g) followed by the aqueous extract (102.72 mg GAE/g and 20.88 mg RE/g, respectively). LC-MS/MS-guided profiling of the three extracts revealed that rosmarinic acid (34.8%), hesperetin (42.9%), and linoleic acid (18%) were the dominant compounds in the methanol, aqueous and hexane extracts, respectively. GC-MS analysis of the hexane extract showed that É£-sitosterol (29.9%) was the major constituent. The methanol extract displayed significantly (p < 0.05) the highest Cu++ , Fe+++ , and Mo(VI) ions scavenging and reducing properties while the aqueous extract exerted significantly (p < 0.05) the highest metal chelating power (42.51 mg EDTAE/g). Both the hexane and methanol extracts effectively inhibited the acetylcholinesterase enzyme (2.63 and 2.65 mg GALAE/g, respectively) while the former extract exerted significantly (p < 0.05) the highest butyrylcholinesterase (2.32 mg GALAE/g), tyrosinase (19.73 mg KAE/g), and amylase (1.16 mmol ACAE/g) inhibition capacity. The aqueous extract exhibited the best glucosidase inhibition property (0.49 mmol ACAE/g). The methanol and hexane extracts exerted a higher cytotoxic effect on HT-29 (IC50 : 8.12 µg/mL) and HeLa (IC50 = 8.08 µg/mL) cells, respectively. In conclusion, these results provide valuable insight into the potential use of T. leucostomus bioactive extracts in different pharmaceutical applications.
Assuntos
Antioxidantes , Hexanos , Antioxidantes/farmacologia , Antioxidantes/química , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Hexanos/análise , Metanol/análise , Butirilcolinesterase , Acetilcolinesterase , Espectrometria de Massas em Tandem , Extratos Vegetais/química , Relação Estrutura-AtividadeRESUMO
Generally, there are scant data about the constituents and eventually the biological activity of essential oils (EOs) from aromatic plants that grow naturally in Sudan. The present study aimed to determine the chemical composition, and antioxidant and enzyme inhibitory activities of EO extracted from the fruit of Chamaecyparis obtusa (Siebold and Zucc.) Endl. (family Cupressaceae), root of Chrysopogon nigritanus (Benth.) Veldkampis (family Poaceae) and aerial part of Lavandula coronopifolia Poir (family Lamiaceae). The fruit of C. obtusa contained only monoterpenes, mainly hydrogenated ones, with α-pinene (69.07%) as the major component. Oxygenated sesquiterpenes comprised the highest content of the C. nigritanus root EO with cedr-8-en-15-ol (28.69%) as the major constituent while aerial parts of L. coronopifolia contained both monoterpenes and sesquiterpenes and the oxygenated monoterpene lavandulol (26.56%) as dominant compounds. The EO of the root of C. nigritanus significantly displayed (p < 0.05) the highest anti-DPPH radical, Fe3+- and Cu2+-reducing and metal-chelating activities, while that of C. obtusa fruit significantly exerted (p < 0.05) the best anti-ABTS radical and total antioxidant activity. The two EOs significantly exhibited (p < 0.05) the highest anti-acetylcholinesterase and -butyrylcholinesterase activities, respectively, while EO of L. coronopifolia was the only oil to show a considerable inhibitory effect against the tyrosinase and α-glucosidase enzymes. In conclusion, EOs from these three plants could be natural agents with promising functional properties for food, cosmetics, and pharmaceutical applications.
Assuntos
Chamaecyparis , Vetiveria , Lavandula , Óleos Voláteis , Sesquiterpenos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Lavandula/química , Chamaecyparis/química , Sudão , Butirilcolinesterase , Monoterpenos , Antioxidantes/farmacologia , Antioxidantes/química , Sesquiterpenos/farmacologiaRESUMO
Patients suffering from inflammatory chronic diseases are classically treated with anti-inflammatory drugs but unfortunately are highly susceptible to becoming resistant to their treatment. Finding new drugs is therefore crucial and urgent and research on endophytic fungi is a promising way forward. Endophytic fungi are microorganisms that colonize healthy plants and live within their intercellular tissues. They are able to produce a large variety of secondary metabolites while allowing their host to stay healthy. A number of these molecules are endowed with antioxidant or antimicrobial as well as cytotoxic properties, making them very interesting/promising in the field of human therapy. The aim of our study was to investigate whether extracts from five endophytic fungi isolated from plants are endowed with anti-inflammatory activity. Extracts of the endophytic fungi Alternaria alternata from Calotropis procera leaves and Aspergillus terreus from Trigonella foenum-graecum seeds were able to counteract the lipopolysaccharide (LPS) pro-inflammatory effect on THP-1 cells differentiated into macrophages. Moreover, they were able to induce an anti-inflammatory state, rendering them less sensitive to the LPS pro-inflammatory stimulus. Taken together, these results show that these both endophytic fungi could be interesting alternatives to conventional anti-inflammatory drugs. To gain more detailed knowledge of their chemical richness, phytochemical analysis of the ethyl acetate extracts of the five endophytic fungi studied was performed using HPTLC, GC-MS and LC-MS with the Global Natural Products Social (GNPS) platform and the MolNetEnhancer tool. A large family of metabolites (carboxylic acids and derivatives, steroid derivatives, alkaloids, hydroxyanthraquinones, valerolactones and perylenequinones) were detected. The purification of endophytic fungus extract of Alternaria alternate, which diminished TNF-α production of 66% at 20 µg/mL, incubated one hour before LPS addition, led to the characterization of eight pure compounds. These molecules are altertoxins I, II, III, tricycloalternarenes 3a, 1b, 2b, anthranilic acid, and o-acetamidobenzoic acid. In the future, all these pure compounds will be evaluated for their anti-inflammatory activity, while altertoxin II has been shown in the literature as the most active mycotoxin in terms of anti-inflammatory activity.
RESUMO
Secamone afzelii (Roem. & Schult.) K. Schum (family Asclepiadaceae) is a creeping woody climber used to treat ailments in many traditional medicine systems. The present study aims to examine the antioxidant and enzyme inhibition activities of S. afzelii leaf using different compositions of methanol-water mixture as an extraction solvent. The extracts were characterized by HPLC-ESI-MSn in terms of chemical compounds. The in silico results show that compound 23 (quercitrin) has the higher docking scores among the selected substances and the MD simulation revealed that the interactions with the enzymatic pocket are stable over the simulation time and strongly involve the tyrosinase catalytic Cu atoms. All together the results showed that both 80% and 100% methanolic extracts contained significantly (p < 0.05) the highest total phenolics content while the highest content of total flavonoids was significantly (p < 0.05) extracted by 100% methanol. About 26 compounds were tentatively identified by HPLC-ESI-MSn and 6 of them were quantified using standards. Results showed that the extracts were rich in flavonoids with a relatively high abundance of two kaempferol glycosides comprising 60% of quantified compounds. The 100% and 80% methanol extracts recorded significantly (p < 0.05) the highest total antioxidant, DPPH and ABTS activity as well as tyrosinase and âº-amylase inhibitory activities. The best significant (p < 0.05) cholinesterase inhibitory activity and reducing capacity of Fe+++ and Cu++ was recorded from the 80% methanolic extract while 100% ethanolic extract gave the highest significant (p < 0.05) butyrylcholinesterase inhibitory activity. The best glucosidase activity was observed in the 50% and 80% methanolic extracts. Although the water extract displayed the least total phenolics and flavonoids content and consequently the lowest antioxidant and enzyme inhibition activity, it displayed significantly (p < 0.05) the highest chelating power. In conclusion, these results demonstrated the richness of S. afzelii leaf as a potential source of bioactive compounds for the food industry, for the preparation of food supplements and functional foods.
Assuntos
Antioxidantes , Inibidores Enzimáticos , Inibidores Enzimáticos/farmacologia , Antioxidantes/química , Metanol/química , Monofenol Mono-Oxigenase , Extratos Vegetais/química , Butirilcolinesterase , Folhas de Planta/química , Flavonoides/farmacologia , Flavonoides/análise , Fenóis/análise , Indústria Alimentícia , Água/análiseRESUMO
Honey is used since ancient time as a food and to cure many diseases. The present study investigated the chemical constituents, antioxidant and enzyme inhibition activities of natural Saudi Sidr (SH) and Talh (TH) honeys. Beside entire honey samples, ethyl acetate, ethanol and water extracts were prepared. The total polyphenolic content of SH, TH and their extracts was in the range of 2.86-7.21 and 3.80-17.33â mg gallic acid equivalents/g, respectively and the total flavonoids content was in the range of 0.05-1.17 and 0.18-2.38â mg rutin equivalents/g, respectively. Out of the 53 standards analyzed by HPLC, 27 compounds were detected with highest number of compounds identified in the ethyl acetate extract of TH (45 %, 24/53) and SH (26 %, 14/53), respectively. Quinic acid was dominant compound identified in all honey samples with the highest content determined in TH ethanol extract (4454â µg/g). The majority of tested samples possessed considerable anti-radicals and reducing ions capacity with the ethyl acetate extract from TH exerted significantly (p<0.05) the highest activity. All honey samples did not show chelating iron metal property. Honey samples revealed variable enzyme inhibition activity with TH (entire and/or ethyl acetate extract) showed significantly (p<0.05) the highest acetylcholinesterase, butyrylcholinesterase, tyrosinase and α-amylase inhibition activity. In conclusion, ethyl acetate is the best solvent for extraction of bioactive molecules from the two honey types. Moreover, the dark-colored TH contained the highest number of molecules and consequently exerted the best antioxidant and enzyme inhibition activities in most assays.
Assuntos
Antioxidantes , Mel , Acetilcolinesterase , Antioxidantes/química , Antioxidantes/farmacologia , Butirilcolinesterase , Etanol , Flavonoides/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Arábia SauditaRESUMO
Several species within the genera Cassia or Senna have a treasure of traditional medicines worldwide and can be a promising source of bioactive molecules. The objective of the present study was to evaluate the phenolic content and antioxidant and enzyme inhibition activities of leaf methanolic extracts of C. fistula L., C. grandis L., S. alexandrina Mill., and S. italica Mill. The two Cassia spp. contained higher total polyphenolic content (42.23-49.75 mg GAE/g) than the two Senna spp., and C. fistula had significantly (p Ë 0.05) the highest concentration. On the other hand, the Senna spp. showed higher total flavonoid content (41.47-59.24 mg rutin equivalent per g of extract) than that found in the two Cassia spp., and S. alexandrina significantly (p Ë 0.05) accumulated the highest amount. HPLC-MS/MS analysis of 38 selected bioactive compounds showed that the majority of compounds were identified in the four species, but with sharp variations in their concentrations. C. fistula was dominated by epicatechin (8928.75 µg/g), C. grandis by kaempferol-3-glucoside (47,360.04 µg/g), while rutin was the major compound in S. italica (17,285.02 µg/g) and S. alexandrina (6381.85). The methanolic extracts of the two Cassia species exerted significantly (p Ë 0.05) higher antiradical activity, metal reducing capacity, and total antioxidant activity than that recorded from the two Senna species' methanolic extracts, and C. fistula displayed significantly (p Ë 0.05) the highest values. C. grandis significantly (p Ë 0.05) exhibited the highest metal chelating power. The results of the enzyme inhibition activity showed that the four species possessed anti-AChE activity, and the highest value, but not significantly (p ≥ 0.05) different from those obtained by the two Cassia spp., was exerted by S. alexandrina. The Cassia spp. exhibited significantly (p Ë 0.05) higher anti-BChE and anti-Tyr properties than the Senna spp., and C. grandise revealed significantly (p Ë 0.05) the highest values. C. grandise revealed significantly (p Ë 0.05) the highest α- amylase inhibition, while the four species had more or less the same effect against the α-glucosidase enzyme. Multivariate analysis and in silico studies showed that many of the identified phenols may play key roles as antioxidant and enzyme inhibitory properties. Thus, these Cassia and Senna species could be a promising source of natural bioactive agents with beneficial effects for human health.
Assuntos
Cassia , Senna , Antioxidantes/farmacologia , Metanol , Fenóis , Extratos Vegetais/farmacologia , Folhas de Planta , Rutina/farmacologia , Espectrometria de Massas em Tandem , alfa-AmilasesRESUMO
This study was aimed to perform the mechanistic investigations of chalcone scaffold as inhibitors of acetylcholinesterase (AChE) enzyme using molecular docking and molecular dynamics simulation tools. Basic chalcones (C1-C5) were synthesized and their in vitro AChE inhibition was tested. Binding interactions were studied using AutoDock and Surflex-Dock programs, whereas the molecular dynamics simulation studies were performed to check the stability of the ligand-protein complex. Good AChE inhibition (IC50 = 22 ± 2.8 to 37.6 ± 0.75 µM) in correlation with the in silico results (binding energies = -8.55 to -8.14 Kcal/mol) were obtained. The mechanistic studies showed that all of the functionalities present in the chalcone scaffold were involved in binding with the amino acid residues at the binding site through hydrogen bonding, π-π, π-cation, π-sigma, and hydrophobic interactions. Molecular dynamics simulation studies showed the formation of stable complex between the AChE enzyme and C4 ligand.
Assuntos
Chalcona , Chalconas , Acetilcolinesterase/metabolismo , Chalconas/química , Inibidores da Colinesterase/química , Ligantes , Simulação de Acoplamento MolecularRESUMO
INTRODUCTION: Geigeria alata is a traditional plant used in Sudanese folk medicine for treatment of diabetes, cough, epilepsy and intestinal complaints. OBJECTIVE: To analyze phenolic acids in Geigeria alata roots and leaves and to evaluate their antioxidant and antimicrobial activities. METHODOLOGY: Phenolic acids in the aqueous-methanol extracts were identified by LC-MS. Major compounds were isolated using low-pressure liquid chromatography. The quantitative analysis of phenolic acids was performed by a validated HPLC-UV method with limits of detection ranging from 0.04 to 0.57 µg/mL. 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazine-6-sulphonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) methods were used for antioxidant activity evaluation. In addition, the minimal inhibitory concentration and the minimal bactericidal concentration against a panel of pathogenic bacteria and fungi were determined by the broth microdilution test. RESULTS: For the first time protocatechuic, caffeic, p-coumaroylquinic, caffeoylsinapoylquinic, caffeoylferuloylquinic, three feruloylquinic, six caffeoylquinic acids, and a caffeic acid hexoside were detected in Geigeria alata roots by LC-MS. HPLC-UV analyses showed that 3,5-dicaffeoylquinic acid (25.96 ± 2.08 mg/g dry weight (DW)) was the most abundant phenolic acid in roots, while 4,5-dicaffeoylquinic acid (8.99 ± 0.56 mg/g DW) was the main compound present in leaves. 3,5-Dicaffeoylquinic acid demonstrated stronger radical scavenging activity and reducing power compared with the crude extracts and the positive control 5-caffeoylquinic acid. 3,4,5-Tricaffeoylquinic acid revealed the highest antibacterial potential against the penicillin sensitive and resistant Staphylococcus aureus strains, as well as methicillin-resistant S. aureus. CONCLUSION: The caffeoylquinic acids content of up to 6.22% in Geigeria alata roots establishes this species as a new source rich in these bioactive molecules. Copyright © 2016 John Wiley & Sons, Ltd.
Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Geigeria/química , Anti-Infecciosos/análise , Anti-Infecciosos/química , Antioxidantes/análise , Antioxidantes/química , Ácidos Cafeicos/análise , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/análise , Cromatografia Líquida , Flavonoides/análise , Espectrometria de Massas/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Raízes de Plantas/química , Plantas Medicinais/química , Polifenóis/análise , Ácido Quínico/análogos & derivados , Ácido Quínico/análiseRESUMO
BACKGROUND: The documentation of ethnobotanical knowledge in Sudan is restricted to specific regions, and there is a far-reaching lack of written information on the traditional use of medicinal plants in other places like Darfur State, in western Sudan. The present study was designed to document the medicinal plants used in traditional medicine of Melit area in North Darfur State. METHOD: Ethnomedicinal information was collected from 135 local informants through semi-structured questionnaires. Data were analysed for use value (UV), informant consensus factor (ICF) and fidelity level. RESULTS: A total of 59 medicinal plants, belonging to 32 families and 55 genera, were recorded for their traditional uses in Melit area. Fabaceae were represented by highest number of species (13) followed by Asteraceae and Malvaceae (4 each) and Poaceae (3). Herbs comprise the main sources (50.8%) of traditional remedies. Fruits and stem bark (17.9% each) were the major plant parts used. Decoction (36.5%) is the most mode of preparation used. Geigeria alata was most commonly used species with UV of 2.37. The highest ICF values were recorded for swellings (ICF = 1.00) and respiratory system (ICF = 0.95) categories. Ten plants, namely Carica papaya, Corchorus trilocularis, Eragrostis cilianensis, Heliotropium sudanicum, Mollugo cerviana, Psiadia punctulate, Rhynchosia minima, Solanum coagulans, Solanum forskalii and Tephrosia purpurea, were cited for the first time as medicinal plants used in Sudan traditional medicine. Resins of Boswellia papyrifera, seeds of Nigella sativa, pods of Vachellia nilotica (syn. Acacia nilotica) and clove of Syzygium aromticum were used to make different preparations for the treatment of the corona virus. CONCLUSION: This is the first ethnobotanical survey conducted in this region which is always suffering from security issues, and results indicated that Melit area harbours high diversity of plants used traditionally to cure different health conditions. The present study aids in conserving such rich heritage, and it is recommended that the newly reported species worth further studying over their phytochemical and biological properties.
Assuntos
Acacia , Plantas Medicinais , Humanos , Fitoterapia/métodos , Etnobotânica/métodos , Medicina Tradicional/métodos , Inquéritos e Questionários , Conhecimentos, Atitudes e Prática em SaúdeRESUMO
The present study aimed to investigate the chemical profile, antioxidant, and enzyme inhibition properties of extracts from fruits and aerial parts (leaves and twigs) of Tamarix aphylla and T. senegalensis. Hexane, dichloromethane, ethyl acetate (EtOAc), and methanol extracts were prepared sequentially by maceration. Results revealed that EtOAc extracts of T. senegalensis and T. aphylla fruits contained the highest total phenolic content (113.74 and 111.21 mg GAE/g) while that of T. senegalensis (38.47 mg RE/g) recorded the highest total flavonoids content. Among the quantified compounds; ellagic, gallic, 3-hydroxybenzoic, caffeic, syringic, p-coumaric acids, isorhamnetin, procyanidin B2, and kaempferol were the most abundant compounds in the two species. EtOAc extracts of the two organs of T. senegalensis in addition to MeOH extract of T. aphylla aerial parts displayed the highest chelating power (21.00-21.30 mg EDTAE/g, p > 0.05). The highest anti-AChE (3.11 mg GALAE/g) and anti-BChE (3.62 mg GALAE/g) activities were recorded from the hexane and EtOAc extracts of T. senegalensis aerial parts and fruits, respectively. EtOAc extracts of the fruits of the two species exerted the highest anti-tyrosinase (anti-Tyr) activity (99.44 and 98.65 mg KAE/g, p > 0.05). Also, the EtOAc extracts of the both organs of the two species exhibited highest anti-glucosidase activity (0.88-0.90 mmol ACAE/g, p > 0.05) while the best anti-α-amylase activity was recorded from the dichloromethane extract of T. senegalensis fruits (0.74 mmol ACAE/g). In this study, network pharmacology was employed to examine the connection between compounds from Tamarix and their potential effectiveness against Alzheimer's disease. The compounds demonstrated potential interactions with pivotal genes including APP, GSK3B, and CDK5, indicating a therapeutic potential. Molecular docking was carried out to understand the binding mode and interaction of the compounds with the target enzymes. Key interactions observed, such as H-bonds, promoted the binding, and weaker ones, such as van der Waals attractions, reinforced it. These findings suggest that these two Tamarix species possess bioactive properties with health-promoting effects.
RESUMO
The present study was performed to determine the chemical constituents, cytotoxicity, antioxidant and enzyme inhibition activities of the aerial parts of Glaucium acutidentatum Hausskn. and Bornm. (family Papaveraceae). Methanolic and aqueous extracts were prepared by maceration, homogenizer-assisted extraction (HAE) and infusion. Results showed that the highest total phenolic and flavonoids contents were obtained from the methanol extracts obtained by HAE (53.22 ± 0.10 mg GAE/g) and maceration (30.28 ± 0.51 mg RE/g), respectively. The aporphine, beznyltetrahydroisoquinoline, and protopine types of Glaucium alkaloids have been tentatively identified. Among them, glaucine was identified in all extracts. Flavonoids, phenolic acids, coumarins, organic acids and fatty acids were also detected. Methanolic extract obtained using the HAE method displayed the highest anti-DPPH (41.42 ± 0.62 mg TE/g), total antioxidant (1.20 ± 0.17 mmol TE/g), Cu2+ (113.55 ± 6.44 mg TE/g), and Fe3+ (74.52 ± 4.74 mg TE/g) reducing properties. The aqueous extracts obtained by infusion and HAE methods exerted the best anti-ABTS (103.59 ± 1.49 mg TE/g) and chelating (19.81 ± 0.05 mg EDTAE/g) activities, respectively. Methanolic extract from HAE recorded the highest acetylcholinesterase (2.55 ± 0.10 mg GALAE/g) and α-amylase (0.51 ± 0.02 mmol ACAE/g) inhibition activities, while that obtained by maceration showed the best butyrylcholinesterase (3.76 ± 0.31 mg GALAE/g) inhibition activity. Both extracts revealed the best tyrosinase inhibitory activity (25.15 ± 1.00 and 26.79 ± 2.36 mg KAE/g, p ≥ 0.05). G. acutidentatum maceration-derived aqueous extract showed selective anticancer activity against cells originating from human hypopharyngeal carcinoma. In conclusion, these findings indicated that G. acutidentatum is a promising source of alkaloids and phenolic compounds for variable pharmaceutical formulations.
RESUMO
The present study was designed to evaluate the chemical composition, antioxidant, enzyme inhibition and cytotoxic properties of different extracts from aerial parts of V. diversifolium (family Scrophulariaceae), a plant that is native to Lebanon, Syria and Turkey. Six extracts, namely, hexane, dichloromethane (DCM), ethyl acetate (EtOAc), ethanol (EtOH), 70% EtOH, and water (aqueous) were prepared by maceration. The EtOH extract was predominated by the presence of rutin (4280.20 µg g-1) and p-coumaric acid (3044.01 µg g-1) while the highest accumulation of kaempferol-3-glucoside (1537.38 µg g-1), caffeic acid (130.13 µg g-1) and 4-hydroxy benzoic acid (465.93 µg g-1) was recorded in the 70% EtOH, aqueous, and EtOAc extracts, respectively. The EtOH (46.86 mg TE/g) and 70% EtOH (46.33 mg TE/g) extracts displayed the highest DPPH radical scavenging result. Both these extracts, along with the aqueous one, exerted the highest ABTS radical scavenging result (73.03-73.56 mg TE/g). The EtOH and 70% EtOH extracts revealed the most potent anti-AChE (2.66 and 2.64 mg GALAE/g) and anti-glucosidase (1.07 and 1.09 mmol ACAE/g) activities. The aqueous extract was the most efficacious in inhibiting the proliferation of prostate cancer (DU-145) cells with an IC50 of 8.71 µg/mL and a Selectivity Index of 3.7. In conclusion, this study appraised the use of V. diversifolium aerial parts as a potential therapeutic source for future development of phytopharmaceuticals that target specific oxidative stress-linked diseases including diabetes, cancer, cardiovascular disease, and Alzheimer's disease among others.
RESUMO
Hibiscus sabdariffa L. (Family: Malvaceae) is believed to be domesticated by the people of western Sudan sometime before 4000 BC for their nutritional and medicinal properties. This study aimed to investigate the chemical profile, antioxidant activity, and enzyme inhibition property of extracts from red roselle (RR) and white roselle (WR) varieties grown in Sudan. Three aqueous extracts obtained by maceration, infusion, and decoction, in addition to the methanolic one, were prepared from the two roselle varieties. Results showed that the highest total phenolic and flavonoid contents of RR were obtained from the extracts prepared by infusion (28.40 mg GAE/g) and decoction (7.94 mg RE/g) respectively, while those from the WR were recorded from the methanolic extract (49.59 mg GAE/g and 5.81 mg RE/g respectively). Extracts of RR were mainly characterized by high accumulation of chlorogenic acid (6502.34-9634.96 mg kg-1), neochlorogenic acid (937.57-8949.61 mg kg-1), and gallic acid (190-4573.55 mg kg-1). On the other hand, neochlorogenic acid (1777.05-6946.39 mg kg-1) and rutin (439.29-2806.01 mg kg-1) were the dominant compounds in WR. All extracts from RR had significant (p < 0.05) higher antioxidant activity than their respective WR except in their metal chelating power, where the methanolic extract of the latter showed the highest activity (3.87 mg EDTAE/g). RR extracts prepared by infusion recorded the highest antioxidant values (35.09, 52.17, 65.62, and 44.92 mg TE/g) in the DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), CUPRAC (cupric ion reducing antioxidant capacity), and FRAP (ferric reducing antioxidant power) assays, respectively. All aqueous extracts from the WR exerted significant (p < 0.05) acetylcholinesterase (AChE) inhibitory activity (3.42-4.77 mg GALAE/g; GALAE = galantamine equivalents), while only one extract, obtained by maceration, from RR exerted AChE inhibitory activity (4.79 mg GALAE/g). All extracts of the RR showed relatively higher BChE (butyrylcholinesterase) inhibitory activity (3.71-4.23 mg GALAE/g) than the WR ones. Methanolic extracts of the two roselle varieties displayed the highest Tyr (tyrosinase) inhibitory activity (RR = 48.25 mg KAE/g; WR = 42.71 mg KAE/g). The methanolic extract of RR exhibited the highest amylase (0.59 mmol ACAE/g) and glucosidase (1.46 mmol ACAE/g) inhibitory activity. Molecular docking analysis showed that delphinidin 3,5-diglucoside, rutin, isoquercitrin, hyperoside, and chlorogenic acid exerted the most promising enzyme inhibitory effect. In conclusion, these findings indicated that the chemical profiles and biological activity of roselle varied according to the variety, extraction solvent, and technique used. These two roselle varieties can serve as a valuable source for the development of multiple formulations in food, pharmaceutical, and cosmetic industries.
RESUMO
The present study was designed to determine the phenolic constituents, antioxidant, and enzyme inhibition activities of aerial parts and bulbs of Allium lycaonicum (family Amaryllidaceae). Extracts were prepared by maceration and Soxhlet/infusion using hexane, methanol, and water as extraction solvents. Generally, extracts from the aerial parts showed higher total phenolic and individual components and antioxidant activity than their respective bulb extracts. Maceration with water was the best to extract total phenolic content from the aerial parts (29.00 mg gallic acid equivalents (GAE)/g), while the Soxhlet extraction with hexane (22.29 mg GAE/g) was the best for the bulb. Maceration with methanol recovered the highest total flavonoid content from both the aerial parts (41.95 mg (rutin equivalents (RE)/g) and bulb (1.83 mg RE/g). Polar extracts of aerial parts were characterized by higher abundance of kaempferol-3-glucoside (≤20,624.27 µg/mg), hyperoside (≤19,722.76 µg/g), isoquercitrin (≤17,270.70 µg/g), delphindin-3,5-diglucoside (≤14,625.21 µg/g), and rutin (≤10,901.61 µg/g) than the bulb. Aerial parts' aqueous extract, prepared by maceration, exerted the highest anti-ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical activity (64.09 mg trolox equivalents (TE)/g), Cu++ (83.03 mg TE/g) and Fe+++ (63.03 mg TE/g) reducing capacity while that prepared by infusion recorded the highest anti-DPPH (2,2-diphenyl-1-picrylhydrazyl) radical (31.70 mg TE/g) and metal chelating (27.66 mg EDTAE/g) activities. The highest total antioxidant activity (1.46 mmol TE/g) was obtained by maceration of the bulb with water. Extracts obtained by organic solvents showed remarkable enzyme inhibition properties against the tested enzymes. Soxhlet extraction of the bulb with hexane and methanol recorded the highest acetylcholinesterase inhibition (4.75 mg galanthamine equivalents (GALAE)/g) and tyrosinase inhibition (139.95 mg kojic acid equivalents/g) activities, respectively. Extracts obtained by maceration of the bulb with methanol and the aerial parts with hexane exerted the highest glucosidase inhibition (3.25 mmol acarbose equivalents/g) and butyrylcholinesterase inhibition (20.99 mg GALAE/g) activities, respectively. These data indicated that A. lycaonicum is a source of bioactive molecules with potential antioxidant and enzyme inhibition properties. Nonetheless, the extracts obtained through various solvents and extraction techniques showed variations in their phytoconstituent composition and biological properties.
RESUMO
Emerging evidence suggests that reactive oxygen (ROS) and nitrogen (RNS) species can contribute to diverse signalling pathways of inflammatory and tumour cells. Cucurbitacins are a group of highly oxygenated triterpenes. Many plants used in folk medicine to treat cancer have been found to contain cucurbitacins displaying potentially important anti-inflammatory actions. The current study was designed to investigate the anti-ROS and -RNS effects of cucurbitacin L 2-O-ß-glucoside (CLG) and the role of these signaling factors in the apoptogenic effects of CLG on human colon cancer cells (HT-29). This natural cucurbitacin was isolated purely from Citrullus lanatus var. citroides (Cucurbitaceae). The results revealed that CLG was cytotoxic to HT-29. CLG increased significantly (P < 0.05) RNA and protein levels of caspase-3 in HT-29 cells when verified using a colorimetric assay and realtime qPCR, respectively. The results showed that lipopolysaccharide/interferon-gamma (LPS/INF-γ) increased nitrous oxide (NO) production inR AW264.7macrophages, whereas N(G)-nitro-L-argininemethyl ester (L-NAME) and CLG curtailed it. This compound did not reveal any cytotoxicity on RAW264.7 macrophages and human normal liver cells (WRL-68) when tested using the MTT assay. Findings of ferric reducing antioxidant power (FRAP) and oxygen radical absorption capacity (ORAC) assays demonstrate the antioxidant properties of CLG. The apoptogenic property of CLG on HT-29 cells is thus related to inhibition of reactive nitrogen and oxygen reactive species and the triggering of caspase-3-regulated apoptosis.
RESUMO
Perylenequinones (PQs) are aromatic polyketides with an oxidized pentacyclic core that make up a family of natural compounds. Naturally occurring PQs mostly are produced by phytopathogenic fungi, with few aphides, crinoids, and plants. PQs, also known as photosensitizers, absorb light energy which empowers them to produce reactive oxygen species that damage host cells. Therefore, PQs gained a considerable interest in pharmaceutical application notably in photodynamic therapy. This review presents a comprehensive overview of fungal PQs. Their occurrence, categorization, biosynthesis, structures, and bioactivities are all discussed in detail. After that, an analysis outlines their distribution across the kingdom of fungi. A total of 66 fungal PQs have been described from 22 ascomycete genera (Alternaria, Aspergillus, Bulgaria, Cenococcum, Cercospora, Cladosporium, Curvularia, Daldinia, Elsinoë, Hypocrella, Hypomyces, Parastagonospora, Phaeosphaeria, Phylacia, Pyrenochaeta, Rhopalostroma, Rubroshiraia, Setophoma, Shiraia, Stemphylium, Stagonospora, and Thamnomyces). Dothideomycetes account for the majority of documented fungal PQs (82%), followed by Sordariomycetes (14%), Leotiomycetes (3%), and Eurotiomycetes (1%). Herein, five families Pleosporaceae, Phaeosphaeriaceae, Cladosporiaceae, Shiraiaceae, and Hypoxylaceae are highlighted as potential sources of novel PQs due to their diversity. The review intends to pique bioprospectors' interest in fungal PQs. Indeed, the pharmaceutical and agrochemical industries might gain greatly by exploiting fungal perylenequinones. Graphical abstract.