Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Strength Cond Res ; 33(5): 1429-1436, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-28195970

RESUMO

Chan, APC, Yang, Y, Wong, FKW, Yam, MCH, Wong, DP, and Song, W-F. Reduction of physiological strain under a hot and humid environment by a hybrid cooling vest. J Strength Cond Res 33(5): 1429-1436, 2019-Cooling treatment is regarded as one of good practices to provide safe training conditions to athletic trainers in the hot environment. The present study aimed to investigate whether wearing a commercial lightweight and portable hybrid cooling vest that combines air ventilation fans with frozen gel packs was an effective means to reduce participants' body heat strain. In this within-subject repeated measures study, 10 male volunteers participated in 2 heat-stress trials (one with the cooling vest-COOL condition, and another without-CON condition, in a randomized order) inside a climatic chamber with a controlled ambient temperature 33° C and relative humidity (RH) 75% on an experimental day. Each trial included a progressively incremental running test, followed by a 40-minute postexercise recovery. Core temperature (Tc), heart rate (HR), sweat rate (SR), rating of perceived exertion (RPE), exercise duration, running distance, and power output were measured. When comparing the 2 conditions, a nonstatistically significant moderate cooling effect in rate of increase in Tc (0.03 ± 0.02° C·min for COOL vs. 0.04 ± 0.02° C·min for CON, p = 0.054, d = 0.57), HR (3 ± 1 b·min·min for COOL vs. 4 ± 1 b·min·min for CON, p = 0.229, d = 0.40), and physiological strain index (PSI) (0.20 ± 0.06 unit·min for COOL vs. 0.23 ± 0.06 unit·min for CON, p = 0.072, d = 0.50) was found in the COOL condition during exercise. A nonstatistically significant (p > 0.05) trivial cooling effect (d < 0.2) was observed between the COOL and CON conditions for measures of exercise duration, running distance, power output, SR, and RPE. It is concluded that the use of the hybrid cooling vest achieved a moderate cooling effect in lowering the rate of increase in physiological strain without impeding the performance of progressively incremental exercise in the heat.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Crioterapia/métodos , Temperatura Alta , Umidade , Roupa de Proteção , Adolescente , Adulto , Atletas , Temperatura Corporal/fisiologia , Desenho de Equipamento , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Transtornos de Estresse por Calor , Humanos , Masculino , Esforço Físico/fisiologia , Corrida/fisiologia , Temperatura Cutânea , Sudorese/fisiologia , Adulto Jovem
2.
Ann Work Expo Health ; 61(7): 883-901, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28810683

RESUMO

Construction workers are subjected to heat stress because of the hot environment, physically demanding tasks, and/or personal protective equipment. A tailor-made cooling vest that protects construction workers from heat-related injuries was developed. The purpose of the study is to examine a newly designed cooling vest's effectiveness in alleviating physiological and perceptual strain in a hot and humid environment. Twelve male participants performed two trials, i.e., cooling vest (VEST) and control (CON) in a climatic chamber controlled at 37°C temperature, 60% relative humidity, 0.3 m/s air velocity, and 450 W/m2 solar radiation to simulate the summer working environment of construction sites. Two bouts of treadmill exercise intermitted with 30-minute passive recovery were designed to simulate the practical work-rest schedule of the construction industry. The cooling vest was used during the passive recovery period in the VEST condition, and the results were compared with that of no cooling vest in the CON condition. The results revealed that the newly designed cooling vest can significantly alleviate heat strain and improve thermal comfort, based on the decrease in body temperature, heart rate, and subjective perceptions (including perceived exertion, thermal, wetness, and comfort sensation) of the participants. It can also prolong work duration in the subsequent exercise. The cooling countermeasures proposed in this study will be able to provide an effective solution in situations that involve repeated bouts of outdoor construction work.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Indústria da Construção , Transtornos de Estresse por Calor/prevenção & controle , Roupa de Proteção/normas , Adulto , Análise de Variância , Desenho de Equipamento , Teste de Esforço , Frequência Cardíaca/fisiologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA