Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lancet ; 401(10373): 294-302, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709074

RESUMO

BACKGROUND: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING: National Institutes of Health.


Assuntos
Adenovirus dos Símios , Marburgvirus , Animais , Adulto , Humanos , Pan troglodytes , Anticorpos Antivirais , Vacinas Sintéticas/efeitos adversos , Adenoviridae , Glicoproteínas , Método Duplo-Cego
2.
Lancet ; 393(10174): 889-898, 2019 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-30686586

RESUMO

BACKGROUND: mAb114 is a single monoclonal antibody that targets the receptor-binding domain of Ebola virus glycoprotein, which prevents mortality in rhesus macaques treated after lethal challenge with Zaire ebolavirus. Here we present expedited data from VRC 608, a phase 1 study to evaluate mAb114 safety, tolerability, pharmacokinetics, and immunogenicity. METHODS: In this phase 1, dose-escalation study (VRC 608), conducted at the US National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA), healthy adults aged 18-60 years were sequentially enrolled into three mAb114 dose groups of 5 mg/kg, 25 mg/kg, and 50 mg/kg. The drug was given to participants intravenously over 30 min, and participants were followed for 24 weeks. Participants were only enrolled into increased dosing groups after interim safety assessments. Our primary endpoints were safety and tolerability, with pharmacokinetic and anti-drug antibody assessments as secondary endpoints. We assessed safety and tolerability in all participants who received study drug by monitoring clinical laboratory data and self-report and direct clinician assessment of prespecified infusion-site symptoms 3 days after infusion and systemic symptoms 7 days after infusion. Unsolicited adverse events were recorded for 28 days. Pharmacokinetic and anti-drug antibody assessments were completed in participants with at least 56 days of data. This trial is registered with ClinicalTrials.gov, number NCT03478891, and is active but no longer recruiting. FINDINGS: Between May 16, and Sept 27, 2018, 19 eligible individuals were enrolled. One (5%) participant was not infused because intravenous access was not adequate. Of 18 (95%) remaining participants, three (17%) were assigned to the 5 mg/kg group, five (28%) to the 25 mg/kg group, and ten (55%) to the 50 mg/kg group, each of whom received a single infusion of mAb114 at their assigned dose. All infusions were well tolerated and completed over 30-37 min with no infusion reactions or rate adjustments. All participants who received the study drug completed the safety assessment of local and systemic reactogenicity. No participants reported infusion-site symptoms. Systemic symptoms were all mild and present only in four (22%) of 18 participants across all dosing groups. No unsolicited adverse events occurred related to mAb114 and one serious adverse event occurred that was unrelated to mAb114. mAb114 has linear pharmacokinetics and a half-life of 24·2 days (standard error of measurement 0·2) with no evidence of anti-drug antibody development. INTERPRETATION: mAb114 was well tolerated, showed linear pharmacokinetics, and was easily and rapidly infused, making it an attractive and deployable option for treatment in outbreak settings. FUNDING: Vaccine Research Center, US National Institute of Allergy and Infectious Diseases, and NIH.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Fatores Imunológicos/imunologia , Fatores Imunológicos/farmacocinética , Proteínas Virais/imunologia , Administração Intravenosa , Adulto , Animais , Anticorpos Monoclonais/administração & dosagem , Relação Dose-Resposta a Droga , Vacinas contra Ebola/administração & dosagem , Feminino , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Fatores Imunológicos/administração & dosagem , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
N Engl J Med ; 376(10): 928-938, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-25426834

RESUMO

BACKGROUND: The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. METHODS: We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×1010 particle units or 2×1011 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer-term vaccine durability was assessed at 48 weeks after vaccination. RESULTS: In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×1011 particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×1011 particle-unit dose than in the group that received the 2×1010 particle-unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2×1011 particle-unit dose than among those who received the 2×1010 particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×1011 particle-unit dose. CONCLUSIONS: Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At the 2×1011 particle-unit dose, glycoprotein Zaire-specific antibody responses were in the range reported to be associated with vaccine-induced protective immunity in challenge studies involving nonhuman primates, and responses were sustained to week 48. Phase 2 studies and efficacy trials assessing cAd3-EBO are in progress. (Funded by the Intramural Research Program of the National Institutes of Health; VRC 207 ClinicalTrials.gov number, NCT02231866 .).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Adenovirus dos Símios , Adulto , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Febre/etiologia , Vetores Genéticos , Glicoproteínas/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Pan troglodytes , Linfócitos T/fisiologia
4.
Lancet ; 391(10120): 552-562, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29217376

RESUMO

BACKGROUND: The Zika virus epidemic and associated congenital infections have prompted rapid vaccine development. We assessed two new DNA vaccines expressing premembrane and envelope Zika virus structural proteins. METHODS: We did two phase 1, randomised, open-label trials involving healthy adult volunteers. The VRC 319 trial, done in three centres, assessed plasmid VRC5288 (Zika virus and Japanese encephalitis virus chimera), and the VRC 320, done in one centre, assessed plasmid VRC5283 (wild-type Zika virus). Eligible participants were aged 18-35 years in VRC19 and 18-50 years in VRC 320. Participants were randomly assigned 1:1 by a computer-generated randomisation schedule prepared by the study statistician. All participants received intramuscular injection of 4 mg vaccine. In VRC 319 participants were assigned to receive vaccinations via needle and syringe at 0 and 8 weeks, 0 and 12 weeks, 0, 4, and 8 weeks, or 0, 4, and 20 weeks. In VRC 320 participants were assigned to receive vaccinations at 0, 4, and 8 weeks via single-dose needle and syringe injection in one deltoid or split-dose needle and syringe or needle-free injection with the Stratis device (Pharmajet, Golden, CO, USA) in each deltoid. Both trials followed up volunteers for 24 months for the primary endpoint of safety, assessed as local and systemic reactogenicity in the 7 days after each vaccination and all adverse events in the 28 days after each vaccination. The secondary endpoint in both trials was immunogenicity 4 weeks after last vaccination. These trials are registered with ClinicalTrials.gov, numbers NCT02840487 and NCT02996461. FINDINGS: VRC 319 enrolled 80 participants (20 in each group), and VRC 320 enrolled 45 participants (15 in each group). One participant in VRC 319 and two in VRC 320 withdrew after one dose of vaccine, but were included in the safety analyses. Both vaccines were safe and well tolerated. All local and systemic symptoms were mild to moderate. In both studies, pain and tenderness at the injection site was the most frequent local symptoms (37 [46%] of 80 participants in VRC 319 and 36 [80%] of 45 in VRC 320) and malaise and headache were the most frequent systemic symptoms (22 [27%] and 18 [22%], respectively, in VRC 319 and 17 [38%] and 15 [33%], respectively, in VRC 320). For VRC5283, 14 of 14 (100%) participants who received split-dose vaccinations by needle-free injection had detectable positive antibody responses, and the geometric mean titre of 304 was the highest across all groups in both trials. INTERPRETATION: VRC5283 was well tolerated and has advanced to phase 2 efficacy testing. FUNDING: Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Zika virus/imunologia , Adulto , Citocinas/biossíntese , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Vacinas de DNA/efeitos adversos , Vacinas Virais/efeitos adversos , Adulto Jovem , Infecção por Zika virus/prevenção & controle
5.
PLoS Med ; 15(1): e1002493, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364886

RESUMO

BACKGROUND: VRC01 is a human broadly neutralizing monoclonal antibody (bnMAb) against the CD4-binding site of the HIV-1 envelope glycoprotein (Env) that is currently being evaluated in a Phase IIb adult HIV-1 prevention efficacy trial. VRC01LS is a modified version of VRC01, designed for extended serum half-life by increased binding affinity to the neonatal Fc receptor. METHODS AND FINDINGS: This Phase I dose-escalation study of VRC01LS in HIV-negative healthy adults was conducted by the Vaccine Research Center (VRC) at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD). The age range of the study volunteers was 21-50 years; 51% of study volunteers were male and 49% were female. Primary objectives were safety and tolerability of VRC01LS intravenous (IV) infusions at 5, 20, and 40 mg/kg infused once, 20 mg/kg given three times at 12-week intervals, and subcutaneous (SC) delivery at 5 mg/kg delivered once, or three times at 12-week intervals. Secondary objectives were pharmacokinetics (PK), serum neutralization activity, and development of antidrug antibodies. Enrollment began on November 16, 2015, and concluded on August 23, 2017. This report describes the safety data for the first 37 volunteers who received administrations of VRC01LS. There were no serious adverse events (SAEs) or dose-limiting toxicities. Mild malaise and myalgia were the most common adverse events (AEs). There were six AEs assessed as possibly related to VRC01LS administration, and all were mild in severity and resolved during the study. PK data were modeled based on the first dose of VRC01LS in the first 25 volunteers to complete their schedule of evaluations. The mean (±SD) serum concentration 12 weeks after one IV administration of 20 mg/kg or 40 mg/kg were 180 ± 43 µg/mL (n = 7) and 326 ± 35 µg/mL (n = 5), respectively. The mean (±SD) serum concentration 12 weeks after one IV and SC administration of 5 mg/kg were 40 ± 3 µg/mL (n = 2) and 25 ± 5 µg/mL (n = 9), respectively. Over the 5-40 mg/kg IV dose range (n = 16), the clearance was 36 ± 8 mL/d with an elimination half-life of 71 ± 18 days. VRC01LS retained its expected neutralizing activity in serum, and anti-VRC01 antibody responses were not detected. Potential limitations of this study include the small sample size typical of Phase I trials and the need to further describe the PK properties of VRC01LS administered on multiple occasions. CONCLUSIONS: The human bnMAb VRC01LS was safe and well tolerated when delivered intravenously or subcutaneously. The half-life was more than 4-fold greater when compared to wild-type VRC01 historical data. The reduced clearance and extended half-life may make it possible to achieve therapeutic levels with less frequent and lower-dose administrations. This would potentially lower the costs of manufacturing and improve the practicality of using passively administered monoclonal antibodies (mAbs) for the prevention of HIV-1 infection. TRIAL REGISTRATION: ClinicalTrials.gov NCT02599896.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Anticorpos Anti-HIV/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , Anticorpos Amplamente Neutralizantes , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Humanos , Infusões Intravenosas , Infusões Subcutâneas , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Lancet ; 384(9959): 2046-52, 2014 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-25132507

RESUMO

BACKGROUND: Chikungunya virus--a mosquito-borne alphavirus--is endemic in Africa and south and southeast Asia and has recently emerged in the Caribbean. No drugs or vaccines are available for treatment or prevention. We aimed to assess the safety, tolerability, and immunogenicity of a new candidate vaccine. METHODS: VRC 311 was a phase 1, dose-escalation, open-label clinical trial of a virus-like particle (VLP) chikungunya virus vaccine, VRC-CHKVLP059-00-VP, in healthy adults aged 18-50 years who were enrolled at the National Institutes of Health Clinical Center (Bethesda, MD, USA). Participants were assigned to sequential dose level groups to receive vaccinations at 10 µg, 20 µg, or 40 µg on weeks 0, 4, and 20, with follow-up for 44 weeks after enrolment. The primary endpoints were safety and tolerability of the vaccine. Secondary endpoints were chikungunya virus-specific immune responses assessed by ELISA and neutralising antibody assays. This trial is registered with ClinicalTrials.gov, NCT01489358. FINDINGS: 25 participants were enrolled from Dec 12, 2011, to March 22, 2012, into the three dosage groups: 10 µg (n=5), 20 µg (n=10), and 40 µg (n=10). The protocol was completed by all five participants at the 10 µg dose, all ten participants at the 20 µg dose, and eight of ten participants at the 40 µg dose; non-completions were for personal circumstances unrelated to adverse events. 73 vaccinations were administered. All injections were well tolerated, with no serious adverse events reported. Neutralising antibodies were detected in all dose groups after the second vaccination (geometric mean titres of the half maximum inhibitory concentration: 2688 in the 10 µg group, 1775 in the 20 µg group, and 7246 in the 40 µg group), and a significant boost occurred after the third vaccination in all dose groups (10 µg group p=0·0197, 20 µg group p<0·0001, and 40 µg group p<0·0001). 4 weeks after the third vaccination, the geometric mean titres of the half maximum inhibitory concentration were 8745 for the 10 µg group, 4525 for the 20 µg group, and 5390 for the 40 µg group. INTERPRETATION: The chikungunya VLP vaccine was immunogenic, safe, and well tolerated. This study represents an important step in vaccine development to combat this rapidly emerging pathogen. Further studies should be done in a larger number of participants and in more diverse populations. FUNDING: Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, and National Institutes of Health.


Assuntos
Vírus Chikungunya/imunologia , Vacinas Virais/administração & dosagem , Adolescente , Adulto , Anticorpos Neutralizantes/análise , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Tolerância Imunológica , Masculino , Pessoa de Meia-Idade , Vacinação
7.
NPJ Vaccines ; 9(1): 67, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553525

RESUMO

Ebola virus disease (EVD) is a filoviral infection caused by virus species of the Ebolavirus genus including Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). We investigated the safety and immunogenicity of a heterologous prime-boost regimen involving a chimpanzee adenovirus 3 vectored Ebola vaccine [either monovalent (cAd3-EBOZ) or bivalent (cAd3-EBO)] prime followed by a recombinant modified vaccinia virus Ankara EBOV vaccine (MVA-EbolaZ) boost in two phase 1/1b randomized open-label clinical trials in healthy adults in the United States (US) and Uganda (UG). Trial US (NCT02408913) enrolled 140 participants, including 26 EVD vaccine-naïve and 114 cAd3-Ebola-experienced participants (April-November 2015). Trial UG (NCT02354404) enrolled 90 participants, including 60 EVD vaccine-naïve and 30 DNA Ebola vaccine-experienced participants (February-April 2015). All tested vaccines and regimens were safe and well tolerated with no serious adverse events reported related to study products. Solicited local and systemic reactogenicity was mostly mild to moderate in severity. The heterologous prime-boost regimen was immunogenic, including induction of durable antibody responses which peaked as early as two weeks and persisted up to one year after each vaccination. Different prime-boost intervals impacted the magnitude of humoral and cellular immune responses. The results from these studies demonstrate promising implications for use of these vaccines in both prophylactic and outbreak settings.

8.
NPJ Vaccines ; 8(1): 39, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922512

RESUMO

Gardasil® (Merck) and Cervarix® (GlaxoSmithKline) both provide protection against infection with Human Papillomavirus 16 (HPV16) and Human Papillomavirus 18 (HPV18), that account for around 70% of cervical cancers. Both vaccines have been shown to induce high levels of neutralizing antibodies and are known to protect against progression beyond cervical intraepithelial neoplasia grade 2 (CIN2+), although Cervarix® has been linked to enhanced protection from progression. However, beyond the transmission-blocking activity of neutralizing antibodies against HPV, no clear correlate of protection has been defined that may explain persistent control and clearance elicited by HPV vaccines. Beyond blocking, antibodies contribute to antiviral activity via the recruitment of the cytotoxic and opsonophagocytic power of the immune system. Thus, here, we used systems serology to comprehensively profile Gardasil®- and Cervarix®- induced antibody subclass, isotype, Fc-receptor binding, and Fc-effector functions against the HPV16 and HPV18 major capsid protein (L1). Overall, both vaccines induced robust functional humoral immune responses against both HPV16 and HPV18. However, Cervarix® elicited higher IgG3 and antibody-dependent complement activating responses, and an overall more coordinated response between HPV16 and 18 compared to Gardasil®, potentially related to the distinct adjuvants delivered with the vaccines. Thus, these data point to robust Fc-effector functions induced by both Gardasil® and Cervarix®, albeit with enhanced coordination observed with Cervarix®, potentially underlying immunological correlates of post-infection control of HPV.

9.
Lancet Infect Dis ; 23(12): 1408-1417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544326

RESUMO

BACKGROUND: Sudan Ebola virus can cause severe viral disease, with an average case fatality rate of 54%. A recent outbreak of Sudan Ebola virus in Uganda caused 55 deaths among 164 confirmed cases in the second half of 2022. Although vaccines and therapeutics specific for Zaire Ebola virus have been approved for use during outbreak situations, Sudan Ebola virus is an antigenically distinct virus with no approved vaccines available. METHODS: In this phase 1, open-label, dose-escalation trial we evaluated the safety, tolerability, and immunogenicity of a monovalent chimpanzee adenovirus 3 vaccine against Sudan Ebola virus (cAd3-EBO S) at Makerere University Walter Reed Project in Kampala, Uganda. Study participants were recruited from the Kampala metropolitan area using International Review Board-approved written and electronic media explaining the trial intervention. Healthy adults without previous receipt of Ebola, Marburg, or cAd3 vectored-vaccines were enrolled to receive cAd3-EBO S at either 1 × 1010 or 1 × 1011 particle units (PU) in a single intramuscular vaccination and were followed up for 48 weeks. Primary safety and tolerability endpoints were assessed in all vaccine recipients by reactogenicity for the first 7 days, adverse events for the first 28 days, and serious adverse events throughout the study. Secondary immunogenicity endpoints included evaluation of binding antibody and T-cell responses against the Sudan Ebola virus glycoprotein, and neutralising antibody responses against the cAd3 vector at 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT04041570, and is completed. FINDINGS: 40 healthy adults were enrolled between July 22 and Oct 1, 2019, with 20 receiving 1 × 1010 PU and 20 receiving 1 × 1011 PU of cAd3-EBO S. 38 (95%) participants completed all follow-up visits. The cAd3-EBO S vaccine was well tolerated with no severe adverse events. The most common reactogenicity symptoms were pain or tenderness at the injection site (34 [85%] of 40), fatigue (29 [73%] of 40), and headache (26 [65%] of 40), and were mild to moderate in severity. Positive responses for glycoprotein-specific binding antibodies were induced by 2 weeks in 31 (78%) participants, increased to 34 (85%) participants by 4 weeks, and persisted to 48 weeks in 31 (82%) participants. Most participants developed glycoprotein-specific T-cell responses (20 [59%, 95% CI 41-75] of 34; six participants were removed from the T cell analysis after failing quality control parameters) by 4 weeks after vaccination, and neutralising titres against the cAd3 vector were also increased from baseline (90% inhibitory concentration of 47, 95% CI 30-73) to 4 weeks after vaccination (196, 125-308). INTERPRETATION: The cAd3-EBO S vaccine was safe at both doses, rapidly inducing immune responses in most participants after a single injection. The rapid onset and durability of the vaccine-induced antibodies make this vaccine a strong candidate for emergency deployment in Sudan Ebola virus outbreaks. FUNDING: National Institutes of Health via interagency agreement with Walter Reed Army Institute of Research.


Assuntos
Adenovirus dos Símios , Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Adulto , Doença pelo Vírus Ebola/prevenção & controle , Pan troglodytes , Uganda , Sudão , Ebolavirus/genética , Anticorpos Antivirais , Adenovirus dos Símios/genética , Adenoviridae/genética , Glicoproteínas , Imunogenicidade da Vacina , Método Duplo-Cego
10.
Lancet Infect Dis ; 22(8): 1210-1220, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35568049

RESUMO

BACKGROUND: Western (WEEV), eastern (EEEV), and Venezuelan (VEEV) equine encephalitis viruses are mosquito-borne pathogens classified as potential biological warfare agents for which there are currently no approved human vaccines or therapies. We aimed to evaluate the safety, tolerability, and immunogenicity of an investigational trivalent virus-like particle (VLP) vaccine, western, eastern, and Venezuelan equine encephalitis (WEVEE) VLP, composed of WEEV, EEEV, and VEEV VLPs. METHODS: The WEVEE VLP vaccine was evaluated in a phase 1, randomised, open-label, dose-escalation trial at the Hope Clinic of the Emory Vaccine Center at Emory University, Atlanta, GA, USA. Eligible participants were healthy adults aged 18-50 years with no previous vaccination history with an investigational alphavirus vaccine. Participants were assigned to a dose group of 6 µg, 30 µg, or 60 µg vaccine product and were randomly assigned (1:1) to receive the WEVEE VLP vaccine with or without aluminium hydroxide suspension (alum) adjuvant by intramuscular injection at study day 0 and at week 8. The primary outcomes were the safety and tolerability of the vaccine (assessed in all participants who received at least one administration of study product) and the secondary outcome was immune response measured as neutralising titres by plaque reduction neutralisation test (PRNT) 4 weeks after the second vaccination. This trial is registered at ClinicalTrials.gov, NCT03879603. FINDINGS: Between April 2, 2019, and June 13, 2019, 30 trial participants were enrolled (mean age 32 years, range 21-48; 16 [53%] female participants and 14 [47%] male participants). Six groups of five participants each received 6 µg, 30 µg, or 60 µg vaccine doses with or without adjuvant, and all 30 participants completed study follow-up. Vaccinations were safe and well tolerated. The most frequently reported symptoms were mild injection-site pain and tenderness (22 [73%] of 30) and malaise (15 [50%] of 30). Dose-dependent differences in the frequency of pain and tenderness were found between the 6 µg, 30 µg, and 60 µg groups (p=0·0217). No significant differences were observed between dosing groups for any other reactogenicity symptom. Two adverse events (mild elevated blood pressure and moderate asymptomatic neutropenia) were assessed as possibly related to the study product in one trial participant (60 µg dose with alum); both resolved without clinical sequelae. 4 weeks after second vaccine administration, neutralising antibodies were induced in all study groups with the highest response seen against all three vaccine antigens in the 30 µg plus alum group (PRNT80 geometric mean titre for EEEV 60·8, 95% CI 29·9-124·0; for VEEV 111·5, 49·8-249·8; and for WEEV 187·9, 90·0-392·2). Finally, 4 weeks after second vaccine administration, for all doses, the majority of trial participants developed an immune response to all three vaccine components (24 [83%] of 29 for EEEV; 26 [90%] of 29 for VEEV; 27 [93%] of 29 for WEEV; and 22 [76%] of 29 for EEEV, VEEV, and WEEV combined). INTERPRETATION: The favourable safety profile and neutralising antibody responses, along with pressing public health need, support further evaluation of the WEVEE VLP vaccine in advanced-phase clinical trials. FUNDING: The Vaccine Research Center of the National Institute of Allergy and Infectious Diseases, National Institutes of Health funded the clinical trial. The US Department of Defense contributed funding for manufacturing of the study product.


Assuntos
Alphavirus , Vírus da Encefalite Equina Venezuelana , Vacinas de Partículas Semelhantes a Vírus , Adjuvantes Imunológicos , Adulto , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Método Duplo-Cego , Feminino , Cavalos , Humanos , Imunogenicidade da Vacina , Masculino , Pessoa de Meia-Idade , Dor , Adulto Jovem
11.
Nat Med ; 28(5): 1022-1030, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411076

RESUMO

Adeno-associated viral vector-mediated transfer of DNA coding for broadly neutralizing anti-HIV antibodies (bnAbs) offers an alternative to attempting to induce protection by vaccination or by repeated infusions of bnAbs. In this study, we administered a recombinant bicistronic adeno-associated virus (AAV8) vector coding for both the light and heavy chains of the potent broadly neutralizing HIV-1 antibody VRC07 (AAV8-VRC07) to eight adults living with HIV. All participants remained on effective anti-retroviral therapy (viral load (VL) <50 copies per milliliter) throughout this phase 1, dose-escalation clinical trial ( NCT03374202 ). AAV8-VRC07 was given at doses of 5 × 1010, 5 × 1011 and 2.5 × 1012 vector genomes per kilogram by intramuscular (IM) injection. Primary endpoints of this study were to assess the safety and tolerability of AAV8-VRC07; to determine the pharmacokinetics and immunogenicity of in vivo VRC07 production; and to describe the immune response directed against AAV8-VRC07 vector and its products. Secondary endpoints were to assess the clinical effects of AAV8-VRC07 on CD4 T cell count and VL and to assess the persistence of VRC07 produced in participants. In this cohort, IM injection of AAV8-VRC07 was safe and well tolerated. No clinically significant change in CD4 T cell count or VL occurred during the 1-3 years of follow-up reported here. In participants who received AAV8-VRC07, concentrations of VRC07 were increased 6 weeks (P = 0.008) and 52 weeks (P = 0.016) after IM injection of the product. All eight individuals produced measurable amounts of serum VRC07, with maximal VRC07 concentrations >1 µg ml-1 in three individuals. In four individuals, VRC07 serum concentrations remained stable near maximal concentration for up to 3 years of follow-up. In exploratory analyses, neutralizing activity of in vivo produced VRC07 was similar to that of in vitro produced VRC07. Three of eight participants showed a non-idiotypic anti-drug antibody (ADA) response directed against the Fab portion of VRC07. This ADA response appeared to decrease the production of serum VRC07 in two of these three participants. These data represent a proof of concept that adeno-associated viral vectors can durably produce biologically active, difficult-to-induce bnAbs in vivo, which could add valuable new tools to the fight against infectious diseases.


Assuntos
Infecções por HIV , HIV-1 , Adulto , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Dependovirus/genética , Anticorpos Anti-HIV , Infecções por HIV/tratamento farmacológico , Humanos
12.
Lancet Respir Med ; 9(10): 1111-1120, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33864736

RESUMO

BACKGROUND: Multiple active vaccination approaches have proven ineffective in reducing the substantial morbidity and mortality caused by respiratory syncytial virus (RSV) in infants and older adults (aged ≥65 years). A vaccine conferring a substantial and sustainable boost in neutralising activity is required to protect against severe RSV disease. To that end, we evaluated the safety and immunogenicity of DS-Cav1, a prefusion F subunit vaccine. METHODS: In this randomised, open-label, phase 1 clinical trial, the stabilised prefusion F vaccine DS-Cav1 was evaluated for dose, safety, tolerability, and immunogenicity in healthy adults aged 18-50 years at a single US site. Participants were assigned to receive escalating doses of either 50 µg, 150 µg, or 500 µg DS-Cav1 at weeks 0 and 12, and were randomly allocated in a 1:1 ratio within each dose group to receive the vaccine with or without aluminium hydroxide (AlOH) adjuvant. After 71 participants had been randomised, the protocol was amended to allow some participants to receive a single vaccination at week 0. The primary objectives evaluated the safety and tolerability at every dose within 28 days following each injection. Neutralising activity and RSV F-binding antibodies were evaluated from week 0 to week 44 as secondary and exploratory objectives. Safety was assessed in all participants who received at least one vaccine dose; secondary and exploratory immunogenicity analysis included all participants with available data at a given visit. The trial is registered with ClinicalTrials.gov, NCT03049488, and is complete and no longer recruiting. FINDINGS: Between Feb 21, 2017, and Nov 29, 2018, 244 participants were screened for eligibility and 95 were enrolled to receive DS-Cav1 at the 50 µg (n=30, of which n=15 with AlOH), 150 µg (n=35, of which n=15 with AlOH), or 500 µg (n=30, of which n=15 with AlOH) doses. DS-Cav1 was safe and well tolerated and no serious vaccine-associated adverse events deemed related to the vaccine were identified. DS-Cav1 vaccination elicited robust neutralising activity and binding antibodies by 4 weeks after a single vaccination (p<0·0001 for F-binding and neutralising antibodies). In analyses of exploratory endpoints at week 44, pre-F-binding IgG and neutralising activity were significantly increased compared with baseline in all groups. At week 44, RSV A neutralising activity was 3·1 fold above baseline in the 50 µg group, 3·8 fold in the 150 µg group, and 4·5 fold in the 500 µg group (p<0·0001). RSV B neutralising activity was 2·8 fold above baseline in the 50 µg group, 3·4 fold in the 150 µg group, and 3·7 fold in the 500 µg group (p<0·0001). Pre-F-binding IgG remained significantly 3·2 fold above baseline in the 50 µg group, 3·4 fold in the 150 µg group, and 4·0 fold in the 500 µg group (p<0·0001). Pre-F-binding serum IgA remained 4·1 fold above baseline in the 50 µg group, 4·3 fold in the 150 µg group, and 4·8 fold in the 500 µg group (p<0·0001). Although a higher vaccine dose or second immunisation elicited a transient advantage compared with lower doses or a single immunisation, neither significantly impacted long-term neutralisation. There was no long-term effect of dose, number of vaccinations, or adjuvant on neutralising activity. INTERPRETATION: In this phase 1 study, DS-Cav1 vaccination was safe and well tolerated. DS-Cav1 vaccination elicited a robust boost in RSV F-specific antibodies and neutralising activity that was sustained above baseline for at least 44 weeks. A single low-dose of pre-F immunisation of antigen-experienced individuals might confer protection that extends throughout an entire RSV season. FUNDING: The National Institutes of Allergy and Infectious Diseases.


Assuntos
Vacinas contra Vírus Sincicial Respiratório , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Método Duplo-Cego , Humanos , Lactente , Pessoa de Meia-Idade , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vírus Sinciciais Respiratórios , Vacinas de Subunidades Antigênicas/efeitos adversos , Adulto Jovem
13.
PLoS One ; 14(9): e0222178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31532789

RESUMO

BACKGROUND: Seasonal influenza results in significant morbidity and mortality worldwide, but the currently licensed inactivated vaccines generally have low vaccine efficacies and could be improved. In this phase 1 clinical trial, we compared seasonal influenza vaccine regimens with different priming strategies, prime-boost intervals, and administration routes to determine the impact of these variables on the resulting antibody response. METHODS: Between August 17, 2012 and January 25, 2013, four sites enrolled healthy adults 18-70 years of age. Subjects were randomized to receive one of the following vaccination regimens: trivalent hemagglutinin (HA) DNA prime followed by trivalent inactivated influenza vaccine (IIV3) boost with a 3.5 month interval (DNA-IIV3), IIV3 prime followed by IIV3 boost with a 10 month interval (IIV3-IIV3), or concurrent DNA and IIV3 prime followed by IIV3 boost with a 10 month interval (DNA/IIV3-IIV3). Each regimen was additionally stratified by an IIV3 administration route of either intramuscular (IM) or intradermal (ID). DNA vaccines were administered by a needle-free jet injector (Biojector). Study objectives included evaluating the safety and tolerability of each regimen and measuring the antibody response by hemagglutination inhibition (HAI). RESULTS: Three hundred and sixteen subjects enrolled. Local reactogenicity was mild to moderate in severity, with higher frequencies recorded following DNA vaccine administered by Biojector compared to IIV3 by either route (p <0.02 for pain, swelling, and redness) and following IIV3 by ID route compared to IM route (p <0.001 for swelling and redness). Systemic reactogenicity was similar between regimens. Though no overall differences were observed between regimens, the highest titers post boost were observed in the DNA-IIV3 group by ID route and in the IIV3-IIV3 group by IM route. CONCLUSIONS: All vaccination regimens were found to be safe and tolerable. While there were no overall differences between regimens, the DNA-IIV3 group by ID route, and the IIV3-IIV3 group by IM route, showed higher responses compared to the other same-route regimens.


Assuntos
Hemaglutininas/administração & dosagem , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Vacinas de DNA/administração & dosagem , Administração Intranasal , Adulto , Idoso , Feminino , Voluntários Saudáveis , Hemaglutininas/efeitos adversos , Hemaglutininas/imunologia , Humanos , Imunização Secundária , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Injeções Intradérmicas , Masculino , Pessoa de Meia-Idade , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
14.
Science ; 365(6452): 505-509, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31371616

RESUMO

Technologies that define the atomic-level structure of neutralization-sensitive epitopes on viral surface proteins are transforming vaccinology and guiding new vaccine development approaches. Previously, iterative rounds of protein engineering were performed to preserve the prefusion conformation of the respiratory syncytial virus (RSV) fusion (F) glycoprotein, resulting in a stabilized subunit vaccine candidate (DS-Cav1), which showed promising results in mice and macaques. Here, phase I human immunogenicity data reveal a more than 10-fold boost in neutralizing activity in serum from antibodies targeting prefusion-specific surfaces of RSV F. These findings represent a clinical proof of concept for structure-based vaccine design, suggest that development of a successful RSV vaccine will be feasible, and portend an era of precision vaccinology.


Assuntos
Imunogenicidade da Vacina , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/química , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Adolescente , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Mapeamento de Epitopos , Humanos , Pessoa de Meia-Idade , Adulto Jovem
15.
Ann Surg Oncol ; 15(12): 3538-49, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18923873

RESUMO

BACKGROUND: We hypothesized that lymph nodes draining sites of cutaneous vaccination could be identified by sentinel node biopsy techniques, and that measuring T-cell response with lymphocytes obtained from these lymph nodes would provide a more sensitive measure of immunogenicity than would the same measurement made with peripheral blood lymphocytes (PBL). METHODS: ELISpot analysis was used to determine the magnitude of vaccine-specific T-cell response in the sentinel immunized nodes (SIN), random lymph nodes, and peripheral blood lymphocytes (PBL) obtained from patients enrolled in clinical trials of experimental melanoma vaccines. RESULTS: The SIN biopsy was successful in 97% of cases and morbidity was very low. The T-cell response to vaccination was detected with greater sensitivity in the SIN (57%) than in PBL (39%), and evaluation of T-cell responses in the SIN and the PBL together yielded T-cell responses in 63% of patients. When the T-cell responses from a SIN and a random lymph node were compared in four patients, immune responses were detected to one of the vaccine peptides in three of these four patients. In all of those cases, responses were present in the SIN but absent from the random lymph node. CONCLUSION: Measurements of T-cell responsiveness to cutaneous immunization are more frequently positive in the SIN than they are in the PBL, however evaluation of both the SIN and PBL permit a more sensitive measure of T-cell immunogenicity than use of either single source.


Assuntos
Vacinas Anticâncer/imunologia , Linfonodos/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Ensaios Clínicos como Assunto , Estudos de Viabilidade , Humanos , Melanoma/imunologia , Pessoa de Meia-Idade , Monitorização Imunológica , Proteínas de Neoplasias/imunologia , Fragmentos de Peptídeos/imunologia , Biópsia de Linfonodo Sentinela , Neoplasias Cutâneas/imunologia , Vacinação
16.
Clin Cancer Res ; 13(21): 6386-95, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17975151

RESUMO

PURPOSE: Human melanoma cells express shared antigens recognized by CD8(+) T lymphocytes, the most common of which are melanocytic differentiation proteins and cancer-testis antigens. However, peptide vaccines for melanoma usually target only one or two MHC class I-associated peptide antigens. Because melanomas commonly evade immune recognition by selective antigen loss, optimization of melanoma vaccines may require development of more complex multipeptide vaccines. EXPERIMENTAL DESIGN: In a prospective randomized clinical trial, we have evaluated the safety and immunogenicity of a vaccine containing a mixture of 12 peptides from melanocytic differentiation proteins and cancer-testis antigens, designed for human leukocyte antigen types that represent 80% of the melanoma patient population. This was compared with a four-peptide vaccine with only melanocytic differentiation peptides. Immune responses were assessed in peripheral blood and in vaccine-draining lymph nodes. RESULTS: These data show that (a) the 12-peptide mixture is immunogenic in all treated patients; (b) immunogenicity of individual peptides is maintained despite competition with additional peptides for binding to MHC molecules; (c) a broader and more robust immune response is induced by vaccination with the more complex 12-peptide mixture; and (d) clinical outcome in this peptide vaccine trial correlates with immune responses measured in the peripheral blood lymphocytes. CONCLUSIONS: These data support continued investigation of complex multipeptide vaccines for melanoma.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Melanoma/patologia , Melanoma/terapia , Vacinas de Subunidades Antigênicas/uso terapêutico , Adulto , Idoso , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/química , Epitopos/química , Feminino , Antígenos HLA/química , Antígenos de Histocompatibilidade Classe I/química , Humanos , Sistema Imunitário , Linfócitos/metabolismo , Masculino , Oncologia/métodos , Pessoa de Meia-Idade , Peptídeos/química , Resultado do Tratamento
17.
PLoS One ; 13(11): e0206837, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30388160

RESUMO

BACKGROUND: Children are susceptible to severe influenza infections and facilitate community transmission. One potential strategy to improve vaccine immunogenicity in children against seasonal influenza involves a trivalent hemagglutinin DNA prime-trivalent inactivated influenza vaccine (IIV3) boost regimen. METHODS: Sites enrolled adolescents, followed by younger children, to receive DNA prime (1 mg or 4 mg) intramuscularly by needle-free jet injector (Biojector), followed by split virus 2012/13 seasonal IIV3 boost by needle and syringe approximately 18 weeks later. A comparator group received IIV3 prime and boost at similar intervals. Primary study objectives included evaluation of the safety and tolerability of the vaccine regimens, with secondary objectives of measuring antibody responses at four weeks post boost by hemagglutination inhibition (HAI) and neutralization assays. RESULTS: Seventy-five children ≥6 to ≤17 years old enrolled. Local reactogenicity was higher after DNA prime compared to IIV3 prime (p<0.001 for pain/tenderness, redness, or swelling), but symptoms were mild to moderate in severity. Systemic reactogenicity was similar between vaccines. Overall, antibody responses were similar among groups, although HAI antibodies revealed a trend towards higher responses following 4 mg DNA-IIV3 compared to IIV3-IIV3. The fold increase of HAI antibodies to A/California/07/2009 [A(H1N1)pdm09] was significantly greater following 4 mg DNA-IIV3 (10.12 fold, 5.60-18.27 95%CI) compared to IIV3-IIV3 (3.86 fold, 2.32-6.44 95%CI). Similar neutralizing titers were observed between regimens, with a trend towards increased response frequencies in 4 mg DNA-IIV3. However, significant differences in fold increase, reported as geometric mean fold ratios, were detected against the H1N1 viruses within the neutralization panel: A/New Caledonia/20/1999 (1.41 fold, 1.10-1.81 95%CI) and A/South Carolina/1/1918 (1.55 fold, 1.27-1.89 95%CI). CONCLUSIONS: In this first pediatric DNA vaccine study conducted in the U.S., the DNA prime-IIV3 boost regimen was safe and well tolerated. In children, the 4 mg DNA-IIV3 regimen resulted in antibody responses comparable to the IIV3-IIV3 regimen.


Assuntos
Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Vacinas de DNA/administração & dosagem , Adolescente , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/imunologia , Criança , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Imunogenicidade da Vacina/efeitos dos fármacos , Imunogenicidade da Vacina/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/imunologia , Influenza Humana/virologia , Masculino , Estações do Ano , Vacinas de Produtos Inativados/administração & dosagem
18.
Clin Nucl Med ; 42(5): 329-334, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28288041

RESUMO

BACKGROUND: While PET using F-FDG is most commonly used for imaging malignant tumors, vaccination is known to cause transient inflammation of lymph nodes inducing positive findings on F-FDG PET scans. The pattern, magnitude, and duration of lymph node activation following vaccination have not been clearly defined. Furthermore, the addition of adjuvants to vaccines can further enhance the immune response. The presented study was designed to define lymph node activation following administration of the Food and Drug Administration-licensed human papillomavirus vaccines, Cervarix and Gardasil, which contain similar antigens with different adjuvants. METHODS: Twenty-seven women aged 18 to 25 years were randomized to receive either Cervarix or Gardasil in the clinical trial VRC 900. Fifteen subjects participated in the PET/CT portion of the trial and received scans of lymph node activation at prevaccination and "1 week" (8-14 days) and "1 month" (23-36 days) after the first or third vaccination. RESULTS: PET/CT scans revealed that all vaccine recipients had ipsilateral axillary lymph node activity. Three of 4 Cervarix recipients also showed contralateral lymph node activity 1 month after the first vaccination. For both Cervarix and Gardasil, the SUV activity resolved over time, with activity extended up to day 37 after the first and third vaccinations. CONCLUSIONS: Following intramuscular vaccination, there were no major differences between duration of uptake and intensity of SUV between Cervarix and Gardasil recipients in ipsilateral axillary lymph nodes. Contralateral node activation was detected up to 1 month after the first vaccination in Cervarix recipients only, possibly reflecting differences in vaccine adjuvant formulation.


Assuntos
Vacina Quadrivalente Recombinante contra HPV tipos 6, 11, 16, 18/imunologia , Linfonodos/diagnóstico por imagem , Linfonodos/metabolismo , Vacinas contra Papillomavirus/imunologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adolescente , Adulto , Feminino , Humanos , Papillomaviridae , Vacinação , Adulto Jovem
19.
NPJ Vaccines ; 2: 15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263871

RESUMO

A novel avian influenza subtype, A/H7N9, emerged in 2013 and represents a public health threat with pandemic potential. We have previously shown that DNA vaccine priming increases the magnitude and quality of antibody responses to H5N1 monovalent inactivated boost. We now report the safety and immunogenicity of a H7 DNA-H7N9 monovalent inactivated vaccine prime-boost regimen. In this Phase 1, open label, randomized clinical trial, we evaluated three H7N9 vaccination regimens in healthy adults, with a prime-boost interval of 16 weeks. Group 1 received H7 DNA vaccine prime and H7N9 monovalent inactivated vaccine boost. Group 2 received H7 DNA and H7N9 monovalent inactivated vaccine as a prime and H7N9 monovalent inactivated vaccine as a boost. Group 3 received H7N9 monovalent inactivated vaccine in a homologous prime-boost regimen. Overall, 30 individuals between 20 to 60 years old enrolled and 28 completed both vaccinations. All injections were well tolerated with no serious adverse events. 2 weeks post-boost, 50% of Group 1 and 33% of Group 2 achieved a HAI titer ≥1:40 compared with 11% of Group 3. Also, at least a fourfold increase in neutralizing antibody responses was seen in 90% of Group 1, 100% of Group 2, and 78% of Group 3 subjects. Peak neutralizing antibody geometric mean titers were significantly greater for Group 1 (GMT = 440.61, p < 0.05) and Group 2 (GMT = 331, p = 0.02) when compared with Group 3 (GMT = 86.11). A novel H7 DNA vaccine was safe, well-tolerated, and immunogenic when boosted with H7N9 monovalent inactivated vaccine, while priming for higher HAI and neutralizing antibody titers than H7N9 monovalent inactivated vaccine alone.

20.
J Clin Oncol ; 22(22): 4474-85, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15542798

RESUMO

PURPOSE: A phase II trial was performed to test whether systemic low-dose interleukin-2 (IL-2) augments T-cell immune responses to a multipeptide melanoma vaccine. Forty patients with resected stage IIB-IV melanoma were randomly assigned to vaccination with four gp100- and tyrosinase-derived peptides restricted by human leukocyte antigen (HLA) -A1, HLA-A2, and HLA-A3, and a tetanus helper peptide plus IL-2 administered daily either beginning day 7 (group 1), or beginning day 28 (group 2). PATIENTS AND METHODS: T-cell responses were assessed by an interferon gamma ELIspot assay in peripheral blood lymphocytes (PBL) and in a lymph node draining a vaccination site (sentinel immunized node [SIN]). Patients were followed for disease-free and overall survival. RESULTS: T-cell responses to the melanoma peptides were observed in 37% of PBL and 38% of SINs in group 1, and in 53% of PBL and 83% of SINs in group 2. The magnitude of T-cell response was higher in group 2. The tyrosinase peptides DAEKSDICTDEY and YMDGTMSQV were more immunogenic than the gp100 peptides YLEPGPVTA and ALLAVGATK. T-cell responses were detected in the SINs more frequently, and with higher magnitude, than responses in the PBL. Disease-free survival estimates at 2 years were 39% (95% CI, 18% to 61%) for group 1, and 50% (95% CI, 28% to 72%) for group 2 (P = .32). CONCLUSION: The results of this study support the safety and immunogenicity of a vaccine composed of four peptides derived from gp100 and tyrosinase. The low-dose IL-2 regimen used for group 1 paradoxically diminishes the magnitude and frequency of cytotoxic T lymphocyte responses to these peptides.


Assuntos
Antineoplásicos/farmacologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Interleucina-2/farmacologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/farmacologia , Adulto , Idoso , Antineoplásicos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Intervalo Livre de Doença , Esquema de Medicação , Feminino , Antígenos HLA/imunologia , Humanos , Interleucina-2/administração & dosagem , Masculino , Glicoproteínas de Membrana/imunologia , Pessoa de Meia-Idade , Proteínas de Neoplasias/imunologia , Resultado do Tratamento , Tirosina/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Antígeno gp100 de Melanoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA