Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396725

RESUMO

The transcription of glycine-rich RNA-binding protein 2 (PeGRP2) transiently increased in the roots and shoots of Populus euphratica (a salt-resistant poplar) upon initial salt exposure and tended to decrease after long-term NaCl stress (100 mM, 12 days). PeGRP2 overexpression in the hybrid Populus tremula × P. alba '717-1B4' (P. × canescens) increased its salt sensitivity, which was reflected in the plant's growth and photosynthesis. PeGRP2 contains a conserved RNA recognition motif domain at the N-terminus, and RNA affinity purification (RAP) sequencing was developed to enrich the target mRNAs that physically interacted with PeGRP2 in P. × canescens. RAP sequencing combined with RT-qPCR revealed that NaCl decreased the transcripts of PeGRP2-interacting mRNAs encoding photosynthetic proteins, antioxidative enzymes, ATPases, and Na+/H+ antiporters in this transgenic poplar. Specifically, PeGRP2 negatively affected the stability of the target mRNAs encoding the photosynthetic proteins PETC and RBCMT; antioxidant enzymes SOD[Mn], CDSP32, and CYB1-2; ATPases AHA11, ACA8, and ACA9; and the Na+/H+ antiporter NHA1. This resulted in (i) a greater reduction in Fv/Fm, YII, ETR, and Pn; (ii) less pronounced activation of antioxidative enzymes; and (iii) a reduced ability to maintain Na+ homeostasis in the transgenic poplars during long-term salt stress, leading to their lowered ability to tolerate salinity stress.


Assuntos
Populus , Tolerância ao Sal , Tolerância ao Sal/genética , Populus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/metabolismo , Íons/metabolismo , Sódio/metabolismo , Homeostase , Adenosina Trifosfatases/metabolismo , Antiporters/metabolismo , Fotossíntese/genética , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000320

RESUMO

The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cádmio , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/metabolismo , Populus/genética , Populus/metabolismo , Populus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estresse Fisiológico/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica
3.
Sci Rep ; 14(1): 16565, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019961

RESUMO

The work numerically investigated laminar natural convection heat transfer from the single sphere with a constant heat flux surface in air over the wide range of Grashof number ( 10 ≤ G r ≤ 10 7 ). The more efficient and precise numerical method based on Bejan et al. was employed here, the accuracy of which has been confirmed through validation against a single sphere case. The heat transfer characteristics were systemically analyzed in terms of isothermal contours and streamlines around the sphere, dimensionless temperature and velocity profiles. Additionally, local Nusselt number as well as local pressure and friction drag coefficients were studied with different Grashof number. In comparison to the sphere with uniform heat flux surface, the heat transfer from the isothermal sphere was found to be enhanced attributable to a more robust buoyancy force and a steeper temperature gradient. Moreover, the average Nusselt number for the sphere with a constant heat flux between 60.4 and 98.6% of the isothermal sphere's value, this range being contingent upon the specific Grashof number. What's more, the proposed correlation addresses a notable void in the predictive understanding of heat transfer from the sphere with uniform heat flux, which is scenario prevalent in various engineering applications, particularly for the cooling of electrical and nuclear systems, and offer values for academic research.

4.
Environ Pollut ; 350: 124039, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670426

RESUMO

Although various activated sodium hypochlorite (NaClO) systems were proven to be promising strategies for recalcitrant organics treatment, the direct interaction between NaClO and pollutants without explicit activation is quite limited. In this work, a revolutionary approach to degrade sulfathiazole (STZ) in aqueous and soil slurry by single NaClO without any activator was proposed. The results demonstrated that 100% and 94.11% of STZ could be degraded by 0.025 mM and 5 mM NaClO in water and soil slurry, respectively. The elimination of STZ was shown to involve superoxide anion (O2•-), chlorine oxygen radical (ClO•), and hydroxyl radical (•OH), according to quenching experiments and the analysis of electron paramagnetic resonance. The addition of Cl-, HCO3-, SO42-, and humic acid (HA) marginally impeded the decomposition of STZ, while NO3-, Fe3+, and Mn2+ facilitated the process. The NaClO process exhibited significant removal effectiveness at a neutral initial pH. Moreover, the NaClO facilitated application in various soil samples and water matrices, and the procedure was also successful in effectively eliminating a range of sulfonamides. The suggested NaClO degradation mechanism of STZ was based on the observed intermediates, and the majority of the products exhibited lower ecotoxicity than STZ. Besides, the experiment results by using X-ray diffraction (XRD) and a fourier transform infrared spectrometer (FTIR) indicated the negligible effects on the composition and structure of soil by the treatment of NaClO. Simultaneously, the experimental results also illustrated that the bioavailability of heavy metals and the physiochemical characteristics of the soil before and after the remediation did not change to a significant extent. Following the remediation of NaClO, the phytotoxicity tests showed reduced toxicity to wheat and cucumber seeds. As a result, treating soil and water contaminated with STZ by using NaClO was a reasonably practical and eco-friendly method.


Assuntos
Poluentes do Solo , Solo , Sulfatiazol , Solo/química , Poluentes do Solo/química , Sulfatiazol/química , Poluentes Químicos da Água/química , Sulfatiazóis/química , Ácido Hipocloroso/química , Hipoclorito de Sódio/química , Substâncias Húmicas
5.
Environ Pollut ; 348: 123867, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556151

RESUMO

A comprehensive understanding of the characteristics of biochar released-dissolved organic matter (BDOM) derived from an invasive plant and its impact on the binding behavior of pharmaceuticals is essential for the application of biochar, yet has received less attention. In this study, the binding behavior of BDOM pyrolyzed at 300-700 °C with sulfathiazole, acetaminophen, chloramphenicol (CAP), and carbamazepine (CMZ) was investigated based on a multi-analytical approach. Generally, the pyrolysis temperature exhibited a more significant impact on the spectral properties of BDOM and pharmaceutical binding behavior than those of the molecular weight. With increased pyrolysis temperature, the dissolved organic carbon decreased while the proportion of the protein-like substance increased. The highest binding capacity towards the drugs was observed for the BDOM pyrolyzed at 500 °C with the molecular weight larger than 0.3 kDa. Moreover, the protein-like substance exhibited higher susceptive and released preferentially during the dialysis process and also showed more sensitivity and bound precedingly with the pharmaceuticals. The active binding points were the aliphatic C-OH, amide II N-H, carboxyl CO, and phenolic-OH on the tryptophan-like substance. Furthermore, the binding affinity of the BDOM pyrolyzed at 500 °C was relatively high with the stability constant (logKM) of 4.51 ± 0.52.


Assuntos
Matéria Orgânica Dissolvida , Pirólise , Temperatura , Peso Molecular , Carvão Vegetal/química , Substâncias Húmicas/análise , Proteínas , Preparações Farmacêuticas
6.
IEEE Trans Image Process ; 33: 3520-3535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814769

RESUMO

Few-shot learning (FSL) poses a significant challenge in classifying unseen classes with limited samples, primarily stemming from the scarcity of data. Although numerous generative approaches have been investigated for FSL, their generation process often results in entangled outputs, exacerbating the distribution shift inherent in FSL. Consequently, this considerably hampers the overall quality of the generated samples. Addressing this concern, we present a pioneering framework called DisGenIB, which leverages an Information Bottleneck (IB) approach for Disentangled Generation. Our framework ensures both discrimination and diversity in the generated samples, simultaneously. Specifically, we introduce a groundbreaking Information Theoretic objective that unifies disentangled representation learning and sample generation within a novel framework. In contrast to previous IB-based methods that struggle to leverage priors, our proposed DisGenIB effectively incorporates priors as invariant domain knowledge of sub-features, thereby enhancing disentanglement. This innovative approach enables us to exploit priors to their full potential and facilitates the overall disentanglement process. Moreover, we establish the theoretical foundation that reveals certain prior generative and disentanglement methods as special instances of our DisGenIB, underscoring the versatility of our proposed framework. To solidify our claims, we conduct comprehensive experiments on demanding FSL benchmarks, affirming the remarkable efficacy and superiority of DisGenIB. Furthermore, the validity of our theoretical analyses is substantiated by the experimental results. Our code is available at https://github.com/eric-hang/DisGenIB.

7.
J Affect Disord ; 351: 309-313, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262522

RESUMO

BACKGROUND: There is great interindividual difference in the plasma concentration of quetiapine, and optimizing quetiapine therapy to achieve a balance between efficacy and safety is still a challenge. In our study, a population pharmacokinetic (PPK) model considering genetic information was developed with the expectation of comprehensively explaining this observation in Chinese patients with bipolar disorder. METHODS: Patients who were dispensed quetiapine and underwent the therapeutic drug monitoring (TDM) were included. The genotypes of CYP3A5*3, CYP2D6*10, and ABCB1 C3435T/G2677T were analyzed. Finally, a multivariable linear regression model was applied to describe the PPK of quetiapine considering the covariates weight, height and genotype information. RESULTS: A total of 175 TDM points from 107 patients were adopted for PPK model development. Resultantly, the CL/F of quetiapine in CYP3A5 expressers was 81.1 CL/h, whereas it was 43.6 CL/h in CYP3A5 nonexpressers. The interindividual variability in CL/F was 47.7 %. However, neither the ABCB1 nor CYP2D6 genotype was significantly associated with the predictor of quetiapine clearance in our study. LIMITATIONS: Only trough concentrations were collected, and the span between different points was relatively wide, impeding the application of the typical nonlinear compartment model for PPK analysis. In addition, this was a single-center study which limited the sample of wild-type CYP3A5 carriers. CONCLUSIONS: The currently established PPK model of quetiapine considering the contribution of the CYP3A5 genotype could efficiently predict the population and individual pharmacokinetic parameters of Chinese bipolar disorder patients, which could better guide the personalized therapy with quetiapine, thus to achieve the best clinical response.


Assuntos
Transtorno Bipolar , Citocromo P-450 CYP3A , Humanos , Fumarato de Quetiapina/uso terapêutico , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP2D6/genética , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Genótipo , China
8.
Plant Sci ; 344: 112082, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583807

RESUMO

The expression of R2R3-MYB transcription factor PeRAX2 increased transiently upon CdCl2 exposure (100 µM, 48 h) in leaves and roots of Populus euphratica. We observed that overexpression of PeRAX2 increased Cd2+ concentration in Arabidopsis root cells and Cd2+ amount in whole plant, which was due to the increased Cd2+ influx into root tips. However, the Cd2+ influx facilitated by PeRAX2 overexpression was substantially reduced by LaCl3 (an inhibitor of Ca2+-channels), suggesting that PeRAX2 could promote the Cd2+ entering through PM Ca2+-permeable channels (CaPCs) in the roots. It is noting that the expression of annexin1 (AtANN1), which mediates the influx of divalent cations through the PM calcium channels, was upregulated by Cd2+ in PeRAX2-transgenic Arabidopsis. Bioinformatic analysis revealed that the AtANN1 promoter (AtANN1-pro) contains four cis-elements for MYB binding. The PeRAX2 interaction with AtANN1-pro was validated by LUC reporter assay, EMSA, and Y1H assay. Our data showed that PeRAX2 binds to the AtANN1 promoter region to regulate gene transcription and that AtANN1 mediates the Cd2+ entry through CaPCs in the PM, leading to a Cd2+ enrichment in transgenic plants. The PeRAX2-stimulated Cd2+ enrichment consequently resulted in high H2O2 production in root cells of transgenic plants. The expression of AtSOD and AtPOD and activities of CAT, SOD, POD increased in the transgenic lines under Cd2+ stress. However, the Cd2+-upregulated expression and activity of antioxidative enzymes were less pronounced in the PeRAX2-overexpressed lines, compared to the wildtype and vector controls. As a result, root length and plant growth were more suppressed by Cd2+ in the transgenic lines. Our data suggest that transcriptional regulation of AtANN1 by PeRAX2 can be utilized to improve Cd2+ enrichment and phytoremediation, although the enriched Cd2+ affected antioxidant defense system and plant growth in the model species.


Assuntos
Arabidopsis , Cádmio , Regulação da Expressão Gênica de Plantas , Populus , Regiões Promotoras Genéticas , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Populus/genética , Populus/metabolismo , Cádmio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética
9.
Plant Physiol Biochem ; 210: 108600, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593488

RESUMO

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.


Assuntos
Homeostase , Fosfolipase D , Proteínas de Plantas , Populus , Estresse Salino , Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fosfolipase D/metabolismo , Fosfolipase D/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Populus/metabolismo , Populus/genética , Populus/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Técnicas do Sistema de Duplo-Híbrido
10.
Plants (Basel) ; 13(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202325

RESUMO

The cultivated peanut (Arachis hypogaea L.) is an important oilseed crop worldwide, and fatty acid composition is a major determinant of peanut oil quality. In the present study, we conducted a genome-wide association study (GWAS) for nine fatty acid traits using the whole genome sequences of 160 representative Chinese peanut landraces and identified 6-1195 significant SNPs for different fatty acid contents. Particularly for oleic acid and linoleic acid, two peak SNP clusters on Arahy.09 and Arahy.19 were found to contain the majority of the significant SNPs associated with these two fatty acids. Additionally, a significant proportion of the candidate genes identified on Arahy.09 overlap with those identified in early studies, among which three candidate genes are of special interest. One possesses a significant missense SNP and encodes a known candidate gene FAD2A. The second gene is the gene closest to the most significant SNP for linoleic acid. It codes for an MYB protein that has been demonstrated to impact fatty acid biosynthesis in Arabidopsis. The third gene harbors a missense SNP and encodes a JmjC domain-containing protein. The significant phenotypic difference in the oleic acid/linoleic acid between the genotypes at the first and third candidate genes was further confirmed with PARMS analysis. In addition, we have also identified different candidate genes (i.e., Arahy.ZV39IJ, Arahy.F9E3EA, Arahy.X9ZZC1, and Arahy.Z0ELT9) for the remaining fatty acids. Our findings can help us gain a better understanding of the genetic foundation of peanut fatty acid contents and may hold great potential for enhancing peanut quality in the future.

11.
Huan Jing Ke Xue ; 44(12): 6790-6800, 2023 Dec 08.
Artigo em Zh | MEDLINE | ID: mdl-38098404

RESUMO

Fe2+ has been commonly selected to activate peroxydisulfate(PDS) for sulfate radical(SO4-·) generation because of its eco-friendly, cost-effective, and high activity characteristics. However, Fe2+ can be rapidly oxidized to Fe3+ in the reaction, leading to poor utilization of iron for PDS activation. Further, a fairly high concentration of Fe2+ is generally required and may cause iron sludge production and secondary pollution. In this study, a minute Fe2+-activated PDS system induced by bisulfite(BS) was used to degrade paracetamol(APAP) in water. The results showed that the Fe2+-PDS system could be enhanced by the circulation of Fe2+-Fe3+ with the injection of BS and by keeping Fe2+ at a high concentration. Under the optimal conditions(PDS=0.6 mol·L-1; BS=0.4 mol·L-1; Fe2+=10 µmol·L-1; pH=4), 100% APAP(4 µmol·L-1) was removed within 180 s. The degradation rate of APAP increased with the increase in BS(0-0.6 mmol·L-1) and PDS(0.2-1.5 mmol·L-1) concentration, and a modest Fe2+ concentration could accelerate APAP removal. Co-existing substances inhibited the APAP removal and followed the order of HCO3->HPO42->Cl->NO3->humic acid(HA). Based on the quenching experiments and electron paramagnetic resonance spectroscopy test, SO4-· was shown to be the primary reactive species for APAP decomposition in the BS-Fe2+-PDS process. Three-dimensional fluorescence spectroscopy revealed that APAP intermediates had fluorescence characteristics. Moreover, five intermediates were identified, and the probable APAP degradation pathways were proposed. The removal efficiencies of APAP were lower in real waters than that in ultrapure water. Nevertheless, the removal effect was greatly improved after a prolonged reaction time. All results indicated that the BS-Fe2+-PDS system could be a promising method for organic pollutant treatment.

12.
Electron. j. biotechnol ; 39: 82-90, may. 2019. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1052045

RESUMO

BACKGROUND: The infection of peanut (Arachis hypogaea L.) seed coat by the pathogenic fungus Aspergillus flavus has highly negative economic and health impacts. However, the molecular mechanism underlying such defense response remains poorly understood. This study aims to address this issue by profiling the transcriptomic and proteomic changes that occur during the infection of the resistant peanut cultivar J11 by A. flavus. RESULTS: Transcriptomic study led to the detection of 13,539 genes, among which 663 exhibited differential expression. Further functional analysis found the differentially expressed genes to encode a wide range of pathogenesis- and/or defense-related proteins such as transcription factors, pathogenesis-related proteins, and chitinases. Changes in the expression patterns of these genes might contribute to peanut resistance to A. flavus. On the other hand, the proteomic profiling showed that 314 of the 1382 detected protein candidates were aberrantly expressed as a result of A. flavus invasion. However, the correlation between the transcriptomic and proteomic data was poor. We further demonstrated by in vitro fungistasis tests that hevamine-A, which was enriched at both transcript and protein levels, could directly inhibit the growth of A. flavus. Conclusions: The results demonstrate the power of complementary transcriptomic and proteomic analyses in the study of pathogen defense and resistance in plants and the chitinase could play an important role in the defense response of peanut to A. flavus. The current study also constitutes the first step toward building an integrated omics data platform for the development of Aspergillus-resistant peanut cultivars


Assuntos
Arachis/genética , Proteoma/análise , Transcriptoma , Arachis/microbiologia , Aspergillus flavus/fisiologia , Sementes/genética , Expressão Gênica , Quitinases , Aflatoxinas , Resistência à Doença/genética , Reação em Cadeia da Polimerase em Tempo Real , RNA-Seq
13.
Electron. j. biotechnol ; 14(6): 6-6, Nov. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-640523

RESUMO

Background: Based on the conserved sequences of a known NBS resistance gene, a pair of degenerate primers was designed to amplify the NBS-LRR resistance gene from peanut using PCR and RACE methods. Results: Analyzing the amino acid sequence by BLAST on NCBI, which was deduced from the 1088bp-long gene named PnAG1-2, showed that it had a certain homology with some resistance proteins, among which Arachis cardenasii resistance protein gene had the highest homology (66 percent). Relative quantification PCR analysis indicated that PnAG1-2 gene expresses more in J11 (an A. flavus-resistant variety) than in JH1012 (an A. flavus-susceptible variety) when the harvest time was coming. Conclusions: In this study, the NBS-LRR resistance sequence was successfully cloned from peanut and prokaryotic expression was done on the gene, which provided a foundation for cultivating anti-A. flavus peanut varieties.


Assuntos
Arachis/genética , Doenças das Plantas/genética , Genes de Plantas , Imunidade Inata/genética , DNA Complementar/genética , Clonagem Molecular , Biologia Computacional , Genoma de Planta , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA