Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(4): 2262-2271, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37947497

RESUMO

BACKGROUND: Diquat is a common environmental pollutant, which can cause oxidative stress in humans and animals. Diquat exposure causes growth retardation and intestinal damage. Therefore, this study was performed to investigate the effects of melatonin on diquat-challenged piglets. RESULTS: Dietary supplementation with 2 mg kg-1 melatonin significantly increased the average daily gain and feed conversion rate in piglets. Melatonin increased antioxidant capacity, and improved intestinal epithelial barrier function of duodenum and jejunum in piglets. Moreover, melatonin was found to regulated the expression of immune and antioxidant-related genes. Melatonin also alleviated diquat-induced growth retardation and anorexia in diquat-challenged piglets. It also increased antioxidant capacity, and ameliorated diquat-induced intestinal epithelial barrier injury. Melatonin also regulated the expression of MnSOD and immuner-elated genes in intestinal. CONCLUSION: Dietary supplementation with 2 mg kg-1 melatonin increased antioxidant capacity to ameliorate diquat-induced oxidative stress, alleviate intestinal epithelial barrier injury, and increase growth performance in weaned piglets. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Melatonina , Humanos , Animais , Suínos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Diquat/efeitos adversos , Melatonina/farmacologia , Suplementos Nutricionais , Transtornos do Crescimento
2.
J Pineal Res ; 64(2)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28875556

RESUMO

Melatonin influences intestinal microbiota and the pathogenesis of various diseases. This study was conducted to explore whether melatonin alleviates weanling stress through intestinal microbiota in a weanling mouse model. Melatonin supplementation in weanling mice (provided in the drinking water at a dosage of 0.2 mg/mL for 2 weeks) significantly improved body weight gain (1.4 ± 0.03 g/day in melatonin group vs 1.2 ± 0.06 g/day in control group) and intestinal morphology (ie, villus length, crypt depth, and villus to crypt ratio), but had little effect on the proliferation or apoptosis of intestinal cells, the numbers of Paneth cells and goblet cells, as well as the expression of makers related to enterocytes (sucrase) and endocrine cells (chromogranin A and peptide YY) in the ileum. Melatonin supplementation had little effect on serum levels of amino acids or stress-related parameters (eg, SOD, TNF-α, and angiotensin I). 16S rRNA sequencing suggested that melatonin supplementation increased the richness indices of intestinal microbiota (observed species, Chao 1, and ACE) and shaped the composition of intestinal microbiota (eg, increase in the abundance of Lactobacillus [19 ± 3% in melatonin group vs 6 ± 2% in control group]), which was demonstrated using an ex vivo proliferation assay and colonic loop proliferation assay. Melatonin supplementation also significantly influenced the metabolism of intestinal microbiota, such as amino acid metabolism and drug metabolism. More importantly, in antibiotic-treated weanling mice and germ-free weanling mice, melatonin failed to affect body weight gain or intestinal morphology. Melatonin significantly reduced (by about 60%) the bacterial load in enterotoxigenic Escherichia coli (ETEC)-infected weanling mice, but had little effect on ETEC load in antibiotic-pretreated animals. In conclusion, melatonin affects body weight gain, intestinal morphology, and intestinal ETEC infection through intestinal microbiota in weanling mice. The findings highlight the importance of intestinal microbiota in mediating the various physiological functions of melatonin in the host.


Assuntos
Antioxidantes/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Melatonina/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR
3.
J Anim Sci ; 97(9): 3795-3808, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31231776

RESUMO

Postnatal growth retardation (PGR) is common in piglets. Abnormal development in small intestine was casually implicated in impaired growth, but the exact mechanism is still implausible. The present study unveiled transcriptome profile of jejunal mucosa, the major site of nutrient absorption, in PGR and healthy piglets using RNA-sequencing (RNA-seq). The middle segments of jejunum and ileum, and jejunal mucosa were obtained from healthy and PGR piglets at 42 d of age. Total RNA samples extracted from jejunal mucosa of healthy and PGR piglets were submitted for RNA-seq. Lower villus height was observed in both jejunum and ileum from PGR piglets suggesting structural impairment in small intestine (P < 0.05). RNA-seq libraries were constructed and sequenced, and produced average 4.8 × 107 clean reads. Analysis revealed a total of 499 differently expressed genes (DEGs), of which 320 DEGs were downregulated in PGR piglets as compared to healthy piglets. The functional annotation based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) highlighted that most DEGs were involved in nutrient metabolism and immune responses. Our results further indicated decreased gene expression associated with glucose, lipid, protein, mineral, and vitamin metabolic process, detoxication ability, oxidoreductase activity, and mucosal barrier function; as well as the increased insulin resistance and inflammatory response in the jejunal mucosa of PGR piglets. These results characterized the transcriptomic profile of the jejunal mucosa in PGR piglets, and could provide valuable information with respect to better understanding the nutrition metabolism and immune responses in the small intestine of piglets.


Assuntos
Regulação da Expressão Gênica/genética , Transtornos do Crescimento/veterinária , Suínos/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica/veterinária , Ontologia Genética , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Masculino , Estado Nutricional , Análise de Sequência de RNA/veterinária , Suínos/imunologia , Suínos/fisiologia
4.
Mucosal Immunol ; 12(2): 531-544, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30523310

RESUMO

The Î³-amino butyric acid (GABA)ergic system shapes the activation and function of immune cells. The present study was conducted to explore the regulation of GABA transporter (GAT)-2 on the differentiation of Th17 cells. Here we found that Th17 cells show higher abundance of GAT-2, and have distinct cellular metabolic signatures, such as the GABA shunt pathway, as compared to naïve T cells. GAT-2 deficiency had little effect on the metabolic signature in naïve T cells, but impaired the GABA uptake and GABA shunt pathway in Th17 cells. GAT-2 deficiency had little effect on T cell development and peripheral T cell homeostasis; however, its deficiency promoted Th17 cell differentiation in vitro. Mechanistically, GAT-2 deficiency promoted differentiation of Th17 cells through activation of GABA-mTOR signaling. In a mouse model of intestinal infection and inflammation, GAT-2 deficiency promoted Th17 responses. Collectively, GAT-2 deficiency promotes Th17 cell responses through activation of GABA-mTOR signaling.


Assuntos
Citrobacter rodentium/fisiologia , Infecções por Enterobacteriaceae/imunologia , GABAérgicos/imunologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Intestinos/imunologia , Células Th17/imunologia , Ácido gama-Aminobutírico/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Homeostase , Intestinos/microbiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
5.
Food Nutr Res ; 622018.
Artigo em Inglês | MEDLINE | ID: mdl-30083086

RESUMO

BACKGROUND: Intestinal stem cells can be differentiated into absorptive enterocytes and secretory cells, including Paneth cells, goblet cells, and enteroendocrine cells. Glutamine is a primary metabolic fuel of small intestinal enterocytes and is essential for the viability and growth of intestinal cells. OBJECTIVE: Whether glutamine supplementation affects the differentiation of intestinal stem cells is unknown. DESIGN: Three-week-old ICR (Institute of Cancer Research) male mice were divided randomly into two groups: 1) mice receiving a basal diet and normal drinking water and 2) mice receiving a basal diet and drinking water supplemented with glutamine. After 2 weeks, the mice were sacrificed to collect the ileum for analysis. RESULTS: The study found that glutamine supplementation in weanling mice decreases the crypt depth in the ileum, leading to higher ratio of villus to crypt in the ileum, but promotes cell proliferation of intestinal cells and mRNA expression of Lgr5 (leucine-rich repeat-containing g-protein coupled receptor5) in the ileum. Glutamine has no effect on the number of Paneth cells and goblet cells, and the expression of markers for absorptive enterocytes, Paneth cells, goblet cells, and enteroendocrine cells. CONCLUSION: These findings reveal the beneficial effects of dietary glutamine supplementation to improve intestinal morphology in weanling mammals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA