Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(10): 16495-16507, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157727

RESUMO

The abrupt behaviors of microdroplets during the LN-based photovoltaic manipulation may cause the transient instability and even failure of the microfluidic manipulation. In this paper, we perform a systematical analysis on the responses of water microdroplets to laser illumination on both naked and PTFE-coated LN:Fe surface, and find that the abrupt repulsive behaviors of the microdroplets are due to the electrostatic transition from the dielectrophoresis (DEP) to electrophoresis (EP) mechanism. Charging of the water microdroplets through the Rayleigh jetting from electrified water/oil interface is suggested as the cause of the DEP-EP transition. Fitting the kinetic data of the microdroplets to the models describing the motion of the microdroplets under the photovoltaic field yields the charging amount depending on the substrate configuration (∼1.7 × 10-11 and 3.9 × 10-12 C on the naked and PTFE-coated LN:Fe substrates), and also reveals the dominance of the EP mechanism in the co-existence of the DEP and EP mechanisms. The outcome of this paper will be quite important to the practicalization of the photovoltaic manipulation in LN-based optofluidic chips.

2.
Sensors (Basel) ; 19(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30709039

RESUMO

In recent years, nitrite pollution has become a subject of great concern for human lives, involving a number of fields, such as environment, food industry and biological process. However, the effective detection of nitrite is an instant demand as well as an unprecedented challenge. Here, a novel nitrite sensor was fabricated by electrochemical deposition of palladium and platinum (Pd-Pt) nanocomposites on porous gallium nitride (PGaN). The obtained Pd-Pt/PGaN sensor provides abundant electrocatalytic sites, endowing it with excellent performances for nitrite detection. The sensor also shows a low detection limit of 0.95 µM, superior linear ampere response and high sensitivity (150 µA/mM for 1 to 300 µM and 73 µA/mM for 300 to 3000 µM) for nitrite. In addition, the Pd-Pt/PGaN sensor was applied and evaluated in the determination of nitrite from the real environmental samples. The experimental results demonstrate that the sensor has good reproducibility and long-term stability. It provides a practical way for rapidly and effectively monitoring nitrite content in the practical application.

3.
Inorg Chem ; 57(3): 1342-1349, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29345923

RESUMO

Two robust metal-organic frameworks (MOFs), {H4[Ni(π-H2O)2]2[Ni(rt-H2O)2]8Ni4(Tri)24}[VIVW12O40]2·24H2O (1) and {H[Ni(π-O)2]2[Ni(rt-H2O)2]8Ni4(Tri)24}[VIVW10VV2O40V2][VIVW9VV3O40VIV2]·24H2O (2) (Tri = 1,2,4-triazole), composed of polyoxometalates (POMs) and metal-organic units, were designed and synthesized by a hydrothermal method. Structure analysis indicates that there is a metal-organic crown [{Ni3(Tri)6(H2O)4}4] ({Ni12}) in these two compounds. In 1, the {Ni12} crown embraces four pendant Tri ligands that could capture a cationic [Ni(H2O)2]2+ group, resulting in the Ni13-Tri building unit [Ni(H2O)2{Ni3(Tri)6(H2O)4}4] ({Ni13}). The {Ni13} building unit was fused together by Tri bridges into the 2D metal-organic layers, which are pillared by a typical Keggin-type POM [VW12O40]4- to construct a 3D supramolecular framework via the hydrogen bonds. Interestingly, the 2D metal-organic layer in 1 was successfully transferred into a 3D covalent MOF via extension of the length of the pillars by capping a Keggin-type POM with V-O units. Moreover, electrochemical behaviors and electrocatalytic properties of these two compounds were both studied, which can act as bifunctional electrocatalysts toward the reduction of H2O2 and oxidation of nitrite in neutral aqueous solution.

4.
Sensors (Basel) ; 17(11)2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29135928

RESUMO

Wearable sensors for detection of human activities have encouraged the development of highly elastic sensors. In particular, to capture subtle and large-scale body motion, stretchable and wide-range strain sensors are highly desired, but still a challenge. Herein, a highly stretchable and transparent stain sensor based on ionic liquids and elastic polymer has been developed. The as-obtained sensor exhibits impressive stretchability with wide-range strain (from 0.1% to 400%), good bending properties and high sensitivity, whose gauge factor can reach 7.9. Importantly, the sensors show excellent biological compatibility and succeed in monitoring the diverse human activities ranging from the complex large-scale multidimensional motions to subtle signals, including wrist, finger and elbow joint bending, finger touch, breath, speech, swallow behavior and pulse wave.


Assuntos
Dispositivos Eletrônicos Vestíveis , Atividades Humanas , Humanos , Líquidos Iônicos , Movimento (Física) , Polímeros
5.
Phys Chem Chem Phys ; 18(16): 11556-7, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27057919

RESUMO

Correction for 'Large-size nanosheets of 9,10-bis(phenylethynyl)anthracene with high photoresponse and light emission anisotropy' by Juan-Ye Wang et al., Phys. Chem. Chem. Phys., 2016, DOI: 10.1039/c5cp05507e.

6.
Phys Chem Chem Phys ; 18(16): 10836-9, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26486880

RESUMO

Large-size single crystalline nanosheets of 9,10-bis(phenylethynyl)-anthracene were prepared by a facile solution process and were fully characterized. The prototype photodetector was then fabricated on the basis of a single nanosheet and exhibited superior performance with the largest photoresponse ratio up to ca. 10(5). Moreover, the nanosheets show obvious light emission anisotropy.

7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(12): 3485-9, 2015 Dec.
Artigo em Zh | MEDLINE | ID: mdl-26964235

RESUMO

LaCeF3:Tb microcrystalline was synthesized by microemulsion method, oleic acid-assisted solvothermal method, ultrasonic-assisted solvothermal method separately. LaCeF3:Tb microcrystalline synthesized by ultrasonic-assisted solvothermal method is rarely reported. Using X-ray diffraction (XRD), scanning electron microscope (SEM), fluorescence spectroscopy (PL) method such as the crystal phase, morphology and luminescence properties of the samples have been characterized. XRD results show that the crystallization product is good, microcrystalline and standard card PDF# 38-0452 (the six-party LaCeF3) is corresponding, SEM images showing the product has uniform size and morphology, under 250 nm excitation nanoparticlesshows strong green light, the main emission peaks respectively belonged to 5D4-->7F6 (489 nm), 5D4-->7F5 (545 nm), 5D4-->7F4 (585 nm) and 5D4-->7F3 (621 nm) transition of Tb³âº. Through LaCeF3 and LaCeF3:Tb spectral studies prove the existence of the Ce-Tb energy transfer. Calculated the critical doping concentration of Tb in LaCeF3microcrystalline synthesized by different methods.

8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(10): 2712-7, 2015 Oct.
Artigo em Zh | MEDLINE | ID: mdl-26904805

RESUMO

A series of Eu3+ /Tb3+ /Tm3+ single/co-doped NaLa(MoO4)2 (NLM) phosphors have been synthesized by microemulsion-hydrothermal method. Phosphor crystal structure, morphology and luminescent properties were tested and studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectroscopy. The results show that the prepared samples are all tetragonal single crystals. By way of substitution, the sites of La3+ are replaced by Eu3+, Tb3+ and Tm3+. Morphology of the samples are tetragonal sheet structure and the size of particles is 1 - 1.5 µm. When the doping concentration of Eu3+ is 9%, NLM : 9%Eu3+ phosphor emission peak is the strongest at 616 nm, the critical transfer distance (R(c)) between Eu3+ in the NLM matrix is about 15.20 Å at this time. At the emission spectrum of NLM : 9%Eu3+, the peak at 591 nm is the magnetic dipole transition of 5D0 to 7F1 of Eu3+. The peak at 616 nm is the electric dipole transition of 5D0 to 7 F2 of Eu3+. Electric dipole transition emission intensity is about 10 times of the strength of the magnetic dipole transition. This indicates that Eu3+ is located at noninversion symmetry site. By Fixing Eu3+ (Tb3+) concentration and varying the concentration of Tb3+ (Eu3+), the energy transfer mechanism between Eu3+ and Tb3+ was studied. By adjusting the Eu3+, Tb3+ and Tm3+ doping concentrations, tunable luminescence of visible light region is implemented under the single matrix. The luminescence of NLM x%Eu3+, y%Tb3+, z%Tm3+ phosphors are translated from blue (0.205, 0.135) to pseudo-white (0.305, 0.266) under 360 nm irradiation.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(12): 3300-4, 2015 Dec.
Artigo em Zh | MEDLINE | ID: mdl-26964198

RESUMO

Using sodium fluoride and rare earth nitrate as raw materials and sodium citrate as surfactant, micron grade NaYF4 upconversion luminescent materials were prepared by hydrothermal method. By X-ray diffraction(XRD), scanning electron microscope(SEM) and fluorescence spectrometer, the crystal phase, morphology and luminescent characteristics of the prepared samples were investigated. The results showed that the phase of the samples could generate a transition from cubic phase to hexagonal phase by adjusting the proportion (5, 6, 7, 8, 9, 11) of NaF/RE , and the X ray diffraction peaks for the cubic and hexagonal phase of samples exactly matched with those of the standard card of PDF# 77-2042 and PDF# 16-0334, respectively. The SEM photographs showed that the crystallinity of samples was high and the dispersibility was favourable, the morphology were translated from microrods to hexagonal microplates. The samples upconversion luminescent spectra showed the intensity enhancement of red and green light emission peaks with increasement of the ratio of NaF/RE3+. The green emission peaks of samples at 520 and 539 nm corresponded to the ²H¹¹/²-4-->I15/2 and 4S3/2-->4I15/2 level transition of Er³âº ion, and the red light emission peaks of samples at 653 nm corresponded to the 4F9/2-->4I15/2 levelt ransition of Er+ ion. The chromaticity coordinate diagram exhibited that the change of the luminescent color of samples could be achieved by adjusting the ratio of NaF/RE³âº. With the increasing of NaF/RE³âº ratio, for the whole light-emitting colors of samples, the shift from yellow region to near red region could be realized. It can be concluded that through the relatively simple experimental procedure and lower cost materials, the change of phase and morphology, the moving of light-emitting color for sample NaYF4:Yb³âº, Er³âº could be well controlled only by changing the single component (NaF) molar ratio in the raw materials. The effect of phase and morphology of fluorescent materials on their upconversion luminescence has great potential applications in photonic devices and bioanalysis research.

10.
Phys Chem Chem Phys ; 16(46): 25251-4, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25353098

RESUMO

The ultralong nanobelts of N,N-bis-(1-propylimidazole)-3,4,9,10-perylene tetracarboxylic diimide (PI-PTCDI) were fabricated by a one-step solution process. The prototype devices based on the PI-PTCDI nanobelts exhibited excellent photodetector and photoswitching performance. The highest Ion/Ioff ratio and photoresponsivity of photodiodes could reach 240 and 5.6 mA W(-1), respectively.

11.
ACS Nano ; 18(28): 18743-18757, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38951720

RESUMO

Continuous rotation of a fragile, photosensitive microrod in a safe, flexible way remains challenging in spite of its importance to microelectro-mechanical systems. We propose a photovoltaic strategy to continuously rotate a fragile, fluorescent microrod on a LiNbO3/Fe (LN/Fe) substrate using a continuous wave visible (473 nm) laser beam with an ultralow power (few tens of µW) and a simple structure (Gaussian profile). This strategy does not require the laser spot to cover the entire microrod nor does it result in a sharp temperature rise on the microrod. Both experiments and simulation reveal that the strongest photovoltaic field generated beside the laser spot firmly traps one corner of the microrod and the axisymmetric photovoltaic field exerts an electrostatic torque on the microrod driving it to rotate continuously around the laser spot. The dependence of the rotation rate on the laser power indicates contributions from both deep and shallow photovoltaic centers. This rotation mode, combined with the transportation mode, enables the controllable movement of an individual microrod along any complex trajectory with any specific orientation. The tuning of the end-emitting spectrum and the photothermal cutting of the fluorescent microrod are also realized by properly configuring the laser illumination. By taking a microrod as the emitter and a polystyrene microsphere as the focusing lens, we demonstrate the photovoltaic assembly of a microscale light-source system with both spectrum and divergence-angle tunabilities, which are realized by adjusting the photoexcitation position along the microrod and the geometry relationship in the system, respectively.

12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(7): 1758-62, 2013 Jul.
Artigo em Zh | MEDLINE | ID: mdl-24059169

RESUMO

Europium doped CaMoO4 and bismuth co-doped CaMoO4 : Eu3+ phosphors were prepared via microemulsion-hydrothermal method. The structure, morphology and luminescence properties of samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectroscopy, respectively. The XRD patterns of as-prepared samples were in agreement with the PDF # 29-0351 of CaMoO4, which indicated that the phosphor possessed tetragonal crystal structure. SEM images showed that the samples were basically flake in shape and their average size was 1.5-2.5 microm. The critical molar concentration of activator (Eu3+) in CaMoO4 : Eu3+ was 5%, and the predominant peak of CaMoO4 : Eu3+ located at 616 nm, corresponding to the 5D0 -->7 F2 electronic dipole transition of Eu3+. The photoluminescence color can be tuned from orange-yellow (0.514, 0.537) to white (0.339, 0.333) by adjusting the doping concentrations of Eu3+ ions. To enhance the red emission intensity of Eu3+, Bi3+ was used to co-dope CaMoO4 : Eu3+ as sensitizers. When the concentration of Bi3+ is 3%, luminescence intensity was maximum. The chromaticity coordinates (CIE) varied from orange (0.497, 0.347) to red (0.585, 0.349) with increasing the content of Bi3+.

13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(8): 2055-9, 2013 Aug.
Artigo em Zh | MEDLINE | ID: mdl-24159845

RESUMO

NaYF4 : Yb3+, Er3+, Tm3+ nanoparticles were prepared by microemulsion-hydrothermal method. Crystal phase, morphology and structure of the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The luminescence properties were studied by up-conversional fluorescence spectroscopy. The XRD patterns of as-prepared samples were in agreement with the PDF # 77-2042 of cubic NaYF4. SEM images of the particles showed that the samples were cotton-like spherical in shape and which were assembled by smaller nano-particles. The average size was 120 nm, while the shape was regular and the particle size was homogeneous. Under the excitation of 980 nm, the as-prepared particles could emit blue (438 and 486 nm), green (523 and 539 nm) and red (650 nm) light simultaneously. It can be seen from the color coordinates figure (CIE) that when doping concentration ratio of Tm3+ and E3+ increased from 0 to 2, the whole emitting light color of samples movedto green region. While the ratio was 1 : 1, pseudo white light was obtained. As the ratio changed from 2 to 7, the luminous color was moved to red region.

14.
Adv Mater ; 35(49): e2304081, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37526054

RESUMO

The electrodeless biocompatible manipulation of femtoliter-scale aqueous microdroplets remains challenging. The appropriate isolation of electrostatic charges from femtoliter-scale aqueous microdroplets is crucial for electrodeless optoelectronic manipulation based on space-charge-density modulation. Here, surfactant-mediated photovoltaic manipulation is proposed, where the surfactant layers self-assembled at the water-oil and oil-Lithium niobate interfaces are employed to isolate photovoltaic charges. The reduced electrostatic attenuation, remarkable hydrophobicity, and strong electrical breakdown suppression of the surfactant layers enable the stable and swift manipulation of femtoliter-scale aqueous microdroplets using µW-level laser in oil media. By virtue of the surfactant-mediated photovoltaic manipulation, a controllable merging/touching/detaching switch of aqueous microdroplets by adjusting the laser illumination intensity and position is realized and the cascading biochemical operations and microreactions of aqueous microdroplets and microdroplet strings are demonstrated. To demonstrate its potential in photonic Micro-Electro-Mechanical-System assemblies, the end coupling of a focused-laser-beam into a ZnO microrod leveraging the refraction effect occurring at the water/oil interface is demonstrated. Moreover, because of the selective permeability of the droplet-interface-bilayer developed between the touching microdroplets, in situ adjustment of the size of the microdroplets and the fluorescent solute contained in the microdroplets are achieved, aiming at constructing multicomponent fluorescent microdroplets with tunable whispering-gallery-mode characteristics.

15.
Plants (Basel) ; 12(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37299103

RESUMO

The leaves of the Chinese cabbage which is most widely consumed come in a wide variety of colors. Leaves that are dark green can promote photosynthesis, effectively improving crop yield, and therefore hold important application and cultivation value. In this study, we selected nine inbred lines of Chinese cabbage displaying slight differences in leaf color, and graded the leaf color using the reflectance spectra. We clarified the differences in gene sequences and the protein structure of ferrochelatase 2 (BrFC2) among the nine inbred lines, and used qRT-PCR to analyze the expression differences of photosynthesis-related genes in inbred lines with minor variations in dark-green leaves. We found expression differences among the inbred lines of Chinese cabbage in photosynthesis-related genes involved in the porphyrin and chlorophyll metabolism, as well as in photosynthesis and photosynthesis-antenna protein pathway. Chlorophyll b content was significantly positively correlated with the expression of PsbQ, LHCA1_1 and LHCB6_1, while chlorophyll a content was significantly negatively correlated with the expression PsbQ, LHCA1_1 and LHCA1_2. Our results provide an empirical basis for the precise identification of candidate genes and a better understanding of the molecular mechanisms responsible for the production of dark-green leaves in Chinese cabbage.

16.
Front Genet ; 13: 958769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226172

RESUMO

Complex transcriptional networks regulate plant defense against pathogen attack, and plant transcription factors act as key regulators of the plant immune responses. The differences between transcription factor expression and regulation in Chinese cabbage soft rot (Pectobacterium carotovorum; Pc) have not been revealed. In this study, a total of 148 putative Chinese cabbage WRKY genes (BrWRKYs) were identified from the Chinese cabbage genome (v3.0). These genes were divided into seven subgroups (groups I, IIa-e, and III) based on phylogenomic analysis, with distinct motif compositions in each subgroup. Time-series RNA-seq was carried out to elucidate the dynamic expression patterns of the BrWRKYs on the resistant mutant (sr) and the susceptible wild-type (inbred WT) challenged by Pc. Transcriptional analysis showed that 48 WRKY transcription genes at 0-24 hpi were significantly upregulated in sr under soft rot stress. At the 12-h post-inoculation critical time point, we identified three specifically upregulated genes and two downregulated genes in the resistant mutant, which may provide potential applications for genetic improvement against soft rot. The findings improved our understanding of the WRKY-mediated soft rot stress response regulation in Chinese cabbage. The study thus lays a foundation for the genetic improvement of soft rot resistance.

17.
Cell Rep ; 41(10): 111758, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476857

RESUMO

The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant library of Chinese cabbage. The dg phenotype is caused by an amino acid substitution in the conserved chlorophyll a/b-binding motif (CAB) of ferrochelatase 2 (BrFC2). This mutation increases the formation of BrFC2 homodimer to promote heme production. Moreover, wild-type BrFC2 and dBrFC2 interact with protochlorophyllide (Pchlide) oxidoreductase B1 and B2 (BrPORB1 and BrPORB2), and dBrFC2 exhibits higher binding ability to substrate Pchlide, thereby promoting BrPORBs-catalyzed production of chlorophyllide (Chlide), which can be directly converted into chlorophyll. Our results show that dBrFC2 is a gain-of-function mutation contributing to balancing heme and chlorophyll synthesis via a regulatory mechanism in which dBrFC2 promotes BrPORB enzymatic reaction to enhance chlorophyll synthesis.


Assuntos
Brassica , Ferroquelatase , Ferroquelatase/genética , Heme , Brassica/genética , Clorofila A , Mutação/genética
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119396, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33433376

RESUMO

Recently, in the research of Surface-enhanced Raman scattering (SERS) technology, it is found that the preparation of enhanced substrate is particularly important. In this work, the most commonly used methods were used to synthesize AgNPs and MIL-101(Fe), and AgNPs/MIL-101(Fe) nanocomposite was obtained through self-assembly of the two substances. Four different probe molecules were detected with the self-assembled substrate and compared with the results of same probe molecules with AgNPs and MIL-101(Fe) as SERS substrate separately, it was found that AgNPs/ MIL-101 (Fe) nanocomposites had a strong enhancing effect as SERS substrate. The Enhancement Factor (EF) value of 10-6 mol/L Rhodamine 6G (R6G) was calculated as 2.09 × 109, and the Raman intensities of the peak relative standard deviation (RSD) of R6G Raman attribution was calculated as 7.55%. The time stability of the material was studied and it was found that the reduced Raman signal and poor reproducibility were due to the AgNPs placement time. AgNPs/ MIL-101 (Fe) nanocomposites were used as SERS substrate to detect Paraquat with a minimum concentration of 10-12 mol/L. The signal values of Paraquat Raman detected at 10-6 mol/L in different pH environments were relatively stable.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(3): 534-7, 2008 Mar.
Artigo em Zh | MEDLINE | ID: mdl-18536406

RESUMO

Phosphors of KZnF3 : Ce3+, KZnF3 : Tb3+ and KZnF3 : Ce3+, Tb3+ nanoparticles were synthesized in a cetyltrimethylammonium bromide (CTAB)/2-octanol/water microemulsion system. X-ray diffraction (XRD) pattern was used to identify the formation of KZnF3 phase without detectable impurity. Environment scanning electron microscopy (ESEM) image showed that the average sizes of the KZnF3 : Ce3+ , Tb3+ nanocrystals were 30 nm in diameter. Photoluminescence characteristics of the rare earth ions doped nanoparticles were investigated and compared with that of the sample prepared by solid state reaction at a high temperature. The emission peak of the KZnF3 : Ce3+ nanoparticles showed an obvious red shift as compared to that of polycrystalline powder. In a co-doped system of KZnF3 nanoparticles, the emission band of Ce3+ even could hardly be observed and the luminescence intensity of Tb3+ was increased much compared with that Tb-doped singly. This showed that the emission of the Tb3+ was sensitized by Ce3+. The experimental results indicated that there was an effective energy transfer from Ce3+ to Tb3+ in KZnF3 nanoparticles.

20.
ACS Omega ; 3(3): 3014-3021, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458567

RESUMO

Flexible, semitransparent ionic liquid gel (ionogels) film was first fabricated by in situ polymerization. The optimized ionogels exhibited excellent mechanical properties, high conductivity, and force sensing characteristics. The multifunctional sensor based on the ionogel film was constructed and provided the high sensitivity of 15.4 kPa-1 and wide detection range sensing from 5 Pa to 5 kPa. Moreover, the aforementioned sensor demonstrated excellent mechanical stability against repeated external deformations (for 3000 cycles under 90° bending). Importantly, the sensor showed advantages in detection of environmental changes to the external stimulus of subtle signals, including a rubber blower blowing the sensor, gently touching, torsion, and bending.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA