Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(22): 12148-12154, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224478

RESUMO

Spiral two-dimensional (2D) nanosheets exhibit unique physical and chemical phenomena due to their twisted structures. While self-assembly of clusters is an ideal strategy to form hierarchical 2D structures, it is challenging to form spiral nanosheets. Herein, we first report a screw dislocation involved assembled method to obtain 2D spiral cluster assembled nanosheets (CANs) with uniform square morphology. The 2D spiral Ru CANs with a length of approximately 4 µm and thickness of 20.7 ± 3.0 nm per layer were prepared via the assembly of 1-2 nm Ru clusters in the presence of molten block copolymer Pluronic F127. Cryo-electron microscopy (cryo-EM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) demonstrate the existence of screw dislocation in the spiral assembled structure. The X-ray absorption fine structure spectrum indicates that Ru clusters are Ru3+ species, and Ru atoms are mainly coordinated with Cl with a coordination number of 6.5. Fourier-transform infrared (FT-IR) spectra and solid-state nuclear magnetic resonance hydrogen spectra (1H NMR) indicate that the assembly process of Ru clusters is formed by noncovalent interactions, including hydrogen bonding and hydrophilic interactions. Additionally, the Ru-F127 CANs exhibit excellent photothermal conversion performance in the near-infrared (NIR) region.

2.
Small ; 17(30): e2101008, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34151515

RESUMO

The catalytic properties of supported metal heterostructures critically depend on the design of metal sites. Although it is well-known that the supports can influence the catalytic activities of metals, precisely regulating the metal-support interactions to achieve highly active and durable catalysts still remain challenging. Here, the authors develop a support effect in the oxide-supported metal monomers (involving Pt, Cu, and Ni) catalysts by means of engineering nitrogen-assisted nanopocket sites. It is found that the nitrogen-permeating process can induce the reconstitution of vacancy interface, resulting in an unsymmetrical atomic arrangement around the vacancy center. The resultant vacancy framework is more beneficial to stabilize Pt monomers and prevent diffusion, which can be further verified by the density functional theory calculations. The final Pt-N/SnO2 catalysts exhibit superior activity and stability for HCHO response (26.5 to 15 ppm). This higher activity allows the reaction to proceed at a lower operating temperature (100 °C). Incorporated with wireless intelligent-sensing system, the Pt-N/SnO2 catalysts can further achieve continuous monitoring of HCHO levels and cloud-based terminal data storage.


Assuntos
Óxidos , Platina , Catálise
3.
Nano Lett ; 18(9): 6017-6021, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30084642

RESUMO

Functional fabrics with various unique properties are necessary for making fantastic superior costumes just like a superhero suit in Marvel Comics, which are not only dreams of boys but also emerging textiles to facilitate human life. On the basis of the inspiration of a phenomenon in an extracurricular experiment for kids, we develop a biofabrication strategy to endow silk textiles with various unique physical and chemical properties of functional nanomaterials, where the functional textiles are weaved using silk spun by silkworms that are fed with functional nanomaterials. To confirm the feasibility of this strategy, a photoluminescent plain weave was prepared successfully via feeding biocompatible luminescent nanoparticles to Bombyx mori silkworms. As the functional nanomaterials are enclosed in the silkfibers, the given special properties will be permanent for further application. Considering the wondrous diversity of properties that a variety of nanomaterials possesses may be given to silk fabric, it is promising to see various miraculous costumes in the coming future.

4.
Nanomicro Lett ; 16(1): 136, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411773

RESUMO

Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction. Herein, we present an ingenious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO2 sensing. We found that the single Pt sites on the MoS2 surface can induce easier volatilization of adjacent S species to activate the whole inert S plane. Reversely, the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms, thus creating a combined system involving S vacancy-assisted single Pt sites (Pt-Vs) to synergistically improve the adsorption ability of SO2 gas molecules. Furthermore, in situ Raman, ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS2 supports in SO2 gas atmosphere. Equipped with wireless-sensing modules, the final Pt1-MoS2-def sensors array can further realize real-time monitoring of SO2 levels and cloud-data storage for plant growth. Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.

5.
Adv Mater ; 34(50): e2206994, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36222376

RESUMO

The nucleation pathway determines the structures and thus properties of formed nanomaterials, which is governed by the free energy of the intermediate phase during nucleation. The amorphous structure, as one of the intermediate phases during nucleation, plays an important role in modulating the nucleation pathway. However, the process and mechanism of crystal nucleation from amorphous structures still need to be fully investigated. Here, in situ aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) is employed to conduct real-time imaging of the nucleation of ultrathin amorphous nanosheets (NSs). The results indicate that their nucleation contains three distinct stages, i.e., aggregation of atoms, crystallization to form lattice-expanded nanocrystals, and relaxation of the lattice-expanded nanocrystals to form final nanocrystals. In particular, the crystallization processes of various amorphous materials are investigated systematically to form corresponding nanocrystals with unconventional crystalline phases, including face-centered-cubic (fcc) Ru, hexagonal-close-packed (hcp) Rh, and a new intermetallic IrCo alloy. In situ electron energy-loss spectroscopy (EELS) analysis unveils that the doped carbon in the original amorphous NSs can migrate to the surface during the nucleation process, stabilizing the obtained unconventional crystal phases transformed from the amorphous structures, which is also proven by density functional theory (DFT) calculations.

6.
Chem Commun (Camb) ; 58(2): 223-237, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878467

RESUMO

Amorphous nanomaterials have aroused extensive interest due to their unique properties. Their performance is highly related with their distinct atomic arrangements, which have no long-range order but possess short- to medium-range order. Herein, an overview of state-of-the-art synthesis methods of amorphous nanomaterials, structural characteristics and their electrochemical properties is presented. Advanced characterization methods for analyzing and proving the local order of amorphous structures, such as X-ray absorption fine structure spectroscopy, atomic electron tomography and nanobeam electron diffraction, are introduced. Various synthesis strategies for amorphous nanomaterials are covered, especially the salt-assisted metal organic decomposition method to prepare ultrathin amorphous nanosheets. Furthermore, the design and structure-activity relationship of amorphous nanomaterials towards electrochemical applications, including electrocatalysts and battery anode/cathode materials, is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA