Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Wound Repair Regen ; 24(4): 630-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27102877

RESUMO

Current chronic wound treatments often fail to promote healing of diabetic foot ulcers (DFU), leading to amputation and increased patient morbidity. A critical mediator of proper wound healing is the production, assembly, and remodeling of the extracellular matrix (ECM) by fibroblasts. However, little is known about how these processes are altered in fibroblasts within the DFU microenvironment. Thus, we investigated the capacity of multiple, primary DFU-derived fibroblast strains to express, produce, and assemble ECM proteins compared to diabetic patient-derived fibroblasts and healthy donor-derived fibroblasts. Gene expression microarray analysis showed differential expression of ECM and ECM-regulatory genes by DFU-derived fibroblasts which translated to functional differences in a 3D in vitro ECM tissue model. DFU-derived fibroblasts produced thin, fibronectin-rich matrices, and responded abnormally when challenged with transforming growth factor-beta, a key regulator of matrix production during healing. These results provide novel evidence that DFU-derived fibroblasts contribute to the defective matrices of DFUs and chronic wound pathogenesis.


Assuntos
Pé Diabético/patologia , Pé Diabético/fisiopatologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Cicatrização , Colágeno Tipo I/metabolismo , Pé Diabético/metabolismo , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Análise em Microsséries , Neovascularização Fisiológica , Fator de Crescimento Transformador beta/farmacologia
2.
Wound Repair Regen ; 24(6): 943-953, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27607190

RESUMO

Diabetic foot ulcers (DFUs) are one of the major complications of diabetes. Its molecular pathology remains poorly understood, impeding the development of effective treatments. Although it has been established that multiple cell types, including fibroblasts, keratinocytes, macrophages, and endothelial cells, all contribute to inhibition of healing, less is known regarding contributions of individual cell type. Thus, we generated primary fibroblasts from nonhealing DFUs and evaluated their cellular and molecular properties in comparison to nondiabetic foot fibroblasts (NFFs). Specifically, we analyzed both micro-RNA and mRNA expression profiles of primary DFU fibroblasts. Paired genomic analyses identified a total of 331 reciprocal miRNA-mRNA pairs including 21 miRNAs (FC > 2.0) along with 239 predicted target genes (FC > 1.5) that are significantly and differentially expressed. Of these, we focused on three miRNAs (miR-21-5p, miR-34a-5p, miR-145-5p) that were induced in DFU fibroblasts as most differentially regulated. The involvement of these microRNAs in wound healing was investigated by testing the expression of their downstream targets as well as by quantifying cellular behaviors in prospectively collected and generated cell lines from 15 patients (seven DFUF and eight NFF samples). We found large number of downstream targets of miR-21-5p, miR-34a-5p, miR-145-5p to be coordinately regulated in mRNA profiles, which was confirmed by quantitative real-time PCR. Pathway analysis on paired miRNA-mRNA profiles predicted inhibition of cell movement and cell proliferation, as well as activation of cell differentiation and senescence in DFU fibroblasts, which was confirmed by cellular assays. We concluded that induction of miR-21-5p, miR-34a-5p, miR-145-5p in DFU dermal fibroblasts plays an important role in impairing multiple cellular functions, thus contributing to overall inhibition of healing in DFUs.


Assuntos
Pé Diabético/genética , Pé Diabético/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Cicatrização , Western Blotting , Diferenciação Celular , Senescência Celular , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Análise em Microsséries , Transdução de Sinais
3.
ACS Synth Biol ; 5(8): 827-34, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27383067

RESUMO

We define a new inversion-based machine called a permuton of n genetic elements, which allows the n elements to be rearranged in any of the n·(n - 1)·(n - 2)···2 = n! distinct orderings. We present two design algorithms for architecting such a machine. We define a notion of a feasible design and use the framework to discuss the feasibility of the permuton architectures. We have implemented our design algorithms in a freely usable web-accessible software for exploration of these machines. Permutation machines could be used as memory elements or state machines and explicitly illustrate a rational approach to designing biological systems.


Assuntos
Algoritmos , Biologia Computacional/métodos , DNA , Modelos Genéticos , Recombinases/genética , Recombinases/metabolismo , Software , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA