Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 34(8): 2871-2891, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35522002

RESUMO

Seed germination represents a major developmental switch in plants that is vital to agriculture, but how this process is controlled at the chromatin level remains obscure. Here we demonstrate that successful germination in Arabidopsis thaliana requires a chromatin mechanism that progressively silences 9-CIS-EPOXYCAROTENOID DIOXYGENASE 6 (NCED6), which encodes a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, through the cooperative action of the RNA-binding protein RZ-1 and the polycomb repressive complex 2 (PRC2). Simultaneous inactivation of RZ-1 and PRC2 blocked germination and synergistically derepressed NCEDs and hundreds of genes. At NCED6, in part by promoting H3 deacetylation and suppressing H3K4me3, RZ-1 facilitates transcriptional silencing and also an H3K27me3 accumulation process that occurs during seed germination and early seedling growth. Genome-wide analysis revealed that RZ-1 is preferentially required for transcriptional silencing of many PRC2 targets early during seed germination, when H3K27me3 is not yet established. We propose RZ-1 confers a novel silencing mechanism to compensate for and synergize with PRC2. Our work highlights the progressive chromatin silencing of ABA biosynthesis genes via the RNA-binding protein RZ-1 and PRC2 acting in synergy, a process that is vital for seed germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Histonas/genética , Histonas/metabolismo , Sementes
2.
Proc Natl Acad Sci U S A ; 113(27): 7667-72, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27330114

RESUMO

Plants sense the light environment through an ensemble of photoreceptors. Members of the phytochrome class of light receptors are known to play a critical role in seedling establishment, and are among the best-characterized plant signaling components. Phytochromes also regulate adult plant growth; however, our knowledge of this process is rather fragmented. This study demonstrates that phytochrome controls carbon allocation and biomass production in the developing plant. Phytochrome mutants have a reduced CO2 uptake, yet overaccumulate daytime sucrose and starch. This finding suggests that even though carbon fixation is impeded, the available carbon resources are not fully used for growth during the day. Supporting this notion, phytochrome depletion alters the proportion of day:night growth. In addition, phytochrome loss leads to sizeable reductions in overall growth, dry weight, total protein levels, and the expression of CELLULOSE SYNTHASE-LIKE genes. Because cellulose and protein are major constituents of plant biomass, our data point to an important role for phytochrome in regulating these fundamental components of plant productivity. We show that phytochrome loss impacts core metabolism, leading to elevated levels of tricarboxylic acid cycle intermediates, amino acids, sugar derivatives, and notably the stress metabolites proline and raffinose. Furthermore, the already growth-retarded phytochrome mutants are less responsive to growth-inhibiting abiotic stresses and have elevated expression of stress marker genes. This coordinated response appears to divert resources from energetically costly biomass production to improve resilience. In nature, this strategy may be activated in phytochrome-disabling, vegetation-dense habitats to enhance survival in potentially resource-limiting conditions.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Fitocromo/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Estresse Fisiológico
3.
Bot Stud ; 56(1): 31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28510840

RESUMO

BACKGROUND: Asparagine (N)-linked glycosylation is one of the most crucial post-translational modifications, which is catalyzed in the lumen of the endoplasmic reticulum (ER) by the oligosaccharyltransferase (OST) in eukaryotic cells. Biochemical and genetic assay leads to the identification of the nine subunits (Ost 1-6, Stt3, Swp1 and Wbp1) of the yeast OST and in which Stt3p is proposed playing a central and conserved role in N-glycosylation. Two STT3 isoform genes, STT3A and STT3B, exist in the plant and mammal genomes. OST with different catalytic STT3 isoforms has different enzymatic properties in mammals. The mutation of STT3A in Arabidopsis thaliana causes a salt hypersensitive phenotype the inhibited root growth and swollen root tips suggesting protein N-glycosylation is indispensable for plant growth and development. Spartina alterniflora is widely used for shoreline protection and tidal marsh restoration due to the strong salt tolerance although the exact molecular mechanism is little known. To explore the possible biological roles of N-glycosylation in plant adaptive resistance to salinity stress, we cloned the STT3 genes from S. alterniflora and heterogenously expressed them in Arabidopsis mutant to observe the functional conservation. RESULTS: SaSTT3A and SaSTT3B genes were cloned from Spartina alterniflora. SaSTT3A genomic sequences spanned over 23 exons and 22 introns, while SaSTT3B had 6 exons and 5 introns. The gene structures of both genes were conserved among the analyzed plant species. Subcellular localization and transmembrane structure prediction revealed that these two genes had 13 and 11 transmembrane helices respectively. The functional complementation in which the cDNA of SaSTT3A and SaSTT3B driven by CaMV 35S promoter completely or partially rescued Arabidopsis stt3a-2 mutant salt-sensitive phenotype, indicating STT3A functions conservatively between glycophyte and halophyte and N-glycosylation might be involved in plant resistance to salinity. CONCLUSIONS: Two STT3 isoform genes, SaSTT3A and SaSTT3B, were cloned from S. alterniflora and they were evolutionally conserved at gene structure and coding sequences compared with their counterparts. Moreover, SaSTT3 genes could successfully rescue Arabidopsis stt3a-2 salt-sensitive phenotype, suggesting there exists a similar N-glycosylation process in S. alterniflora. Here we provided a first piece of evidence that the N-glycosylation might be involved in salt tolerance of halophyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA