Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 627(8005): 898-904, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480887

RESUMO

A wooden house frame consists of many different lumber pieces, but because of the regularity of these building blocks, the structure can be designed using straightforward geometrical principles. The design of multicomponent protein assemblies, in comparison, has been much more complex, largely owing to the irregular shapes of protein structures1. Here we describe extendable linear, curved and angled protein building blocks, as well as inter-block interactions, that conform to specified geometric standards; assemblies designed using these blocks inherit their extendability and regular interaction surfaces, enabling them to be expanded or contracted by varying the number of modules, and reinforced with secondary struts. Using X-ray crystallography and electron microscopy, we validate nanomaterial designs ranging from simple polygonal and circular oligomers that can be concentrically nested, up to large polyhedral nanocages and unbounded straight 'train track' assemblies with reconfigurable sizes and geometries that can be readily blueprinted. Because of the complexity of protein structures and sequence-structure relationships, it has not previously been possible to build up large protein assemblies by deliberate placement of protein backbones onto a blank three-dimensional canvas; the simplicity and geometric regularity of our design platform now enables construction of protein nanomaterials according to 'back of an envelope' architectural blueprints.


Assuntos
Nanoestruturas , Proteínas , Cristalografia por Raios X , Nanoestruturas/química , Proteínas/química , Proteínas/metabolismo , Microscopia Eletrônica , Reprodutibilidade dos Testes
2.
Proc Natl Acad Sci U S A ; 121(13): e2314646121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502697

RESUMO

The design of protein-protein interfaces using physics-based design methods such as Rosetta requires substantial computational resources and manual refinement by expert structural biologists. Deep learning methods promise to simplify protein-protein interface design and enable its application to a wide variety of problems by researchers from various scientific disciplines. Here, we test the ability of a deep learning method for protein sequence design, ProteinMPNN, to design two-component tetrahedral protein nanomaterials and benchmark its performance against Rosetta. ProteinMPNN had a similar success rate to Rosetta, yielding 13 new experimentally confirmed assemblies, but required orders of magnitude less computation and no manual refinement. The interfaces designed by ProteinMPNN were substantially more polar than those designed by Rosetta, which facilitated in vitro assembly of the designed nanomaterials from independently purified components. Crystal structures of several of the assemblies confirmed the accuracy of the design method at high resolution. Our results showcase the potential of deep learning-based methods to unlock the widespread application of designed protein-protein interfaces and self-assembling protein nanomaterials in biotechnology.


Assuntos
Nanoestruturas , Proteínas , Modelos Moleculares , Proteínas/química , Sequência de Aminoácidos , Biotecnologia , Conformação Proteica
3.
Nat Mater ; 22(12): 1556-1563, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845322

RESUMO

Protein crystallization plays a central role in structural biology. Despite this, the process of crystallization remains poorly understood and highly empirical, with crystal contacts, lattice packing arrangements and space group preferences being largely unpredictable. Programming protein crystallization through precisely engineered side-chain-side-chain interactions across protein-protein interfaces is an outstanding challenge. Here we develop a general computational approach for designing three-dimensional protein crystals with prespecified lattice architectures at atomic accuracy that hierarchically constrains the overall number of degrees of freedom of the system. We design three pairs of oligomers that can be individually purified, and upon mixing, spontaneously self-assemble into >100 µm three-dimensional crystals. The structures of these crystals are nearly identical to the computational design models, closely corresponding in both overall architecture and the specific protein-protein interactions. The dimensions of the crystal unit cell can be systematically redesigned while retaining the space group symmetry and overall architecture, and the crystals are extremely porous and highly stable. Our approach enables the computational design of protein crystals with high accuracy, and the designed protein crystals, which have both structural and assembly information encoded in their primary sequences, provide a powerful platform for biological materials engineering.


Assuntos
Proteínas , Proteínas/química , Cristalização
4.
PLoS Comput Biol ; 19(5): e1010680, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216343

RESUMO

Computationally designed multi-subunit assemblies have shown considerable promise for a variety of applications, including a new generation of potent vaccines. One of the major routes to such materials is rigid body sequence-independent docking of cyclic oligomers into architectures with point group or lattice symmetries. Current methods for docking and designing such assemblies are tailored to specific classes of symmetry and are difficult to modify for novel applications. Here we describe RPXDock, a fast, flexible, and modular software package for sequence-independent rigid-body protein docking across a wide range of symmetric architectures that is easily customizable for further development. RPXDock uses an efficient hierarchical search and a residue-pair transform (RPX) scoring method to rapidly search through multidimensional docking space. We describe the structure of the software, provide practical guidelines for its use, and describe the available functionalities including a variety of score functions and filtering tools that can be used to guide and refine docking results towards desired configurations.


Assuntos
Algoritmos , Nanoestruturas , Conformação Proteica , Proteínas/química , Software , Ligação Proteica , Simulação de Acoplamento Molecular
5.
J Health Care Finance ; 2016(Spec Features)2016.
Artigo em Inglês | MEDLINE | ID: mdl-28280294

RESUMO

Approved medical devices frequently undergo FDA mandated post-approval studies (PAS). However, there is uncertainty as to the value of PAS in assessing the safety of medical devices and the cost of these studies to the healthcare system is unknown. Since PAS costs are funded through device manufacturers who do not share the costs with regulators, we sought to estimate the total PAS costs through interviews with a panel of experts in medical device clinical trial design in order to design a general cost model for PAS which was then applied to the FDA PAS. A total of 277 PAS were initiated between 3/1/05 through 6/30/13 and demonstrated a median cost of $2.16 million per study and an overall cost of $1.22 billion over the 8.25 years of study. While these costs are funded through manufacturers, the ultimate cost is borne by the healthcare system through the medical device costs. Given concerns regarding the informational value of PAS, the resources used to support mandated PAS may be better allocated to other approaches to assure safety.


Assuntos
Custos e Análise de Custo , Aprovação de Equipamentos , United States Food and Drug Administration , Desenho de Equipamento , Humanos , Segurança , Estados Unidos
6.
Cureus ; 16(1): e52815, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38389588

RESUMO

Primary or secondary non-Hodgkin lymphomas (NHLs) involving the female gynecologic tract are rare. T-cell subtypes are further rare and portend a worse prognosis. We present a case of a 23-year-old female presenting with a cervical mass accompanied by constitutional symptoms and abnormal vaginal bleeding. Immunohistochemistry studies revealed the presence of disseminated T-cell non-Hodgkin lymphoma that was anaplastic lymphoma kinase (ALK)-positive. The patient demonstrated a complete response to systemic chemotherapy initially and again after the relapse of the disease one year after diagnosis. To our knowledge, this is the first case of an ALK-positive T-cell lymphoma with secondary involvement of the uterus and cervix; all previously published cases of this histologic subtype in the gynecologic tract describe primary disease of the vagina. This case emphasizes the importance of immunohistochemistry studies inclusive of T-cell and B-cell markers when evaluating biopsies from cervical tumors to render the appropriate diagnosis and guide systemic therapy.

7.
Nat Struct Mol Biol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724718

RESUMO

Programming protein nanomaterials to respond to changes in environmental conditions is a current challenge for protein design and is important for targeted delivery of biologics. Here we describe the design of octahedral non-porous nanoparticles with a targeting antibody on the two-fold symmetry axis, a designed trimer programmed to disassemble below a tunable pH transition point on the three-fold axis, and a designed tetramer on the four-fold symmetry axis. Designed non-covalent interfaces guide cooperative nanoparticle assembly from independently purified components, and a cryo-EM density map closely matches the computational design model. The designed nanoparticles can package protein and nucleic acid payloads, are endocytosed following antibody-mediated targeting of cell surface receptors, and undergo tunable pH-dependent disassembly at pH values ranging between 5.9 and 6.7. The ability to incorporate almost any antibody into a non-porous pH-dependent nanoparticle opens up new routes to antibody-directed targeted delivery.

8.
Hematol Oncol Stem Cell Ther ; 17(1): 4-12, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37581463

RESUMO

Daratumumab is a first-in-class human anti-CD38 IgG1 monoclonal antibody approved for treating newly diagnosed and relapsed refractory multiple myeloma. Pre-clinical data supported daratumumab's ability to deplete autoantibodies producing plasma cells, B-cells, and NK cells. Those reports showed promising results on using daratumumab in autoimmune disorders that are refractory to multiple lines of therapies, which encouraged using daratumumab in various autoimmune conditions that are refractory to standard therapies. This review aims to summarize the literature reporting experience using anti-CD38 antibodies in hematological autoimmune diseases, focusing on the most common autoimmune hematological diseases, including autoimmune hemolytic anemia, immune thrombocytopenia, post-transplant cytopenia, and pure red blood cell aplasia.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Adulto , ADP-Ribosil Ciclase 1 , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico
9.
Protein Sci ; 32(11): e4769, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632837

RESUMO

Targeted intracellular delivery via receptor-mediated endocytosis requires the delivered cargo to escape the endosome to prevent lysosomal degradation. This can in principle be achieved by membrane lysis tightly restricted to endosomal membranes upon internalization to avoid general membrane insertion and lysis. Here, we describe the design of small monomeric proteins with buried histidine containing pH-responsive hydrogen bond networks and membrane permeating amphipathic helices. Of the 30 designs that were experimentally tested, all expressed in Escherichia coli, 13 were monomeric with the expected secondary structure, and 4 designs disrupted artificial liposomes in a pH-dependent manner. Mutational analysis showed that the buried histidine hydrogen bond networks mediate pH-responsiveness and control lysis of model membranes within a very narrow range of pH (6.0-5.5) with almost no lysis occurring at neutral pH. These tightly controlled lytic monomers could help mediate endosomal escape in designed targeted delivery platforms.


Assuntos
Histidina , Lipossomos , Estrutura Secundária de Proteína , Concentração de Íons de Hidrogênio
10.
bioRxiv ; 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37398374

RESUMO

Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions 1-3. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry 4,5. Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540, and 960 subunits. At 49, 71, and 96 nm diameter, these nanoparticles are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work represents an important step towards the accurate design of arbitrary self-assembling nanoscale protein objects.

11.
Res Sq ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503272

RESUMO

Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions1-3. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry4,5. Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540, and 960 subunits. At 49, 71, and 96 nm diameter, these nanoparticles are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work represents an important step towards the accurate design of arbitrary self-assembling nanoscale protein objects.

12.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577478

RESUMO

The design of novel protein-protein interfaces using physics-based design methods such as Rosetta requires substantial computational resources and manual refinement by expert structural biologists. A new generation of deep learning methods promises to simplify protein-protein interface design and enable its application to a wide variety of problems by researchers from various scientific disciplines. Here we test the ability of a deep learning method for protein sequence design, ProteinMPNN, to design two-component tetrahedral protein nanomaterials and benchmark its performance against Rosetta. ProteinMPNN had a similar success rate to Rosetta, yielding 13 new experimentally confirmed assemblies, but required orders of magnitude less computation and no manual refinement. The interfaces designed by ProteinMPNN were substantially more polar than those designed by Rosetta, which facilitated in vitro assembly of the designed nanomaterials from independently purified components. Crystal structures of several of the assemblies confirmed the accuracy of the design method at high resolution. Our results showcase the potential of deep learning-based methods to unlock the widespread application of designed protein-protein interfaces and self-assembling protein nanomaterials in biotechnology.

13.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131615

RESUMO

Programming protein nanomaterials to respond to changes in environmental conditions is a current challenge for protein design and important for targeted delivery of biologics. We describe the design of octahedral non-porous nanoparticles with the three symmetry axes (four-fold, three-fold, and two-fold) occupied by three distinct protein homooligomers: a de novo designed tetramer, an antibody of interest, and a designed trimer programmed to disassemble below a tunable pH transition point. The nanoparticles assemble cooperatively from independently purified components, and a cryo-EM density map reveals that the structure is very close to the computational design model. The designed nanoparticles can package a variety of molecular payloads, are endocytosed following antibody-mediated targeting of cell surface receptors, and undergo tunable pH-dependent disassembly at pH values ranging between to 5.9-6.7. To our knowledge, these are the first designed nanoparticles with more than two structural components and with finely tunable environmental sensitivity, and they provide new routes to antibody-directed targeted delivery.

14.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333359

RESUMO

A wooden house frame consists of many different lumber pieces, but because of the regularity of these building blocks, the structure can be designed using straightforward geometrical principles. The design of multicomponent protein assemblies in comparison has been much more complex, largely due to the irregular shapes of protein structures 1 . Here we describe extendable linear, curved, and angled protein building blocks, as well as inter-block interactions that conform to specified geometric standards; assemblies designed using these blocks inherit their extendability and regular interaction surfaces, enabling them to be expanded or contracted by varying the number of modules, and reinforced with secondary struts. Using X-ray crystallography and electron microscopy, we validate nanomaterial designs ranging from simple polygonal and circular oligomers that can be concentrically nested, up to large polyhedral nanocages and unbounded straight "train track" assemblies with reconfigurable sizes and geometries that can be readily blueprinted. Because of the complexity of protein structures and sequence-structure relationships, it has not been previously possible to build up large protein assemblies by deliberate placement of protein backbones onto a blank 3D canvas; the simplicity and geometric regularity of our design platform now enables construction of protein nanomaterials according to "back of an envelope" architectural blueprints.

15.
Elife ; 112022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35942939

RESUMO

We have identified active enhancers in the mouse cerebellum at embryonic and postnatal stages which provides a view of novel enhancers active during cerebellar development. The majority of cerebellar enhancers have dynamic activity between embryonic and postnatal development. Cerebellar enhancers were enriched for neural transcription factor binding sites with temporally specific expression. Putative gene targets displayed spatially restricted expression patterns, indicating cell-type specific expression regulation. Functional analysis of target genes indicated that enhancers regulate processes spanning several developmental epochs such as specification, differentiation and maturation. We use these analyses to discover one novel regulator and one novel marker of cerebellar development: Bhlhe22 and Pax3, respectively. We identified an enrichment of de novo mutations and variants associated with autism spectrum disorder in cerebellar enhancers. Furthermore, by comparing our data with relevant brain development ENCODE histone profiles and cerebellar single-cell datasets we have been able to generalize and expand on the presented analyses, respectively. We have made the results of our analyses available online in the Developing Mouse Cerebellum Enhancer Atlas, where our dataset can be efficiently queried, curated and exported by the scientific community to facilitate future research efforts. Our study provides a valuable resource for studying the dynamics of gene expression regulation by enhancers in the developing cerebellum and delivers a rich dataset of novel gene-enhancer associations providing a basis for future in-depth studies in the cerebellum.


Assuntos
Transtorno do Espectro Autista , Elementos Facilitadores Genéticos , Animais , Transtorno do Espectro Autista/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Neurogênese/genética , Fatores de Transcrição/metabolismo
16.
Account Res ; 27(8): 477-495, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32515609

RESUMO

Scientific research increasingly requires international collaboration among scientists. Less is known, however, about the barriers that impede such collaboration. In this pioneering study, more than 9000 scientists from eight societies - the United States, the United Kingdom, India, Italy, Taiwan, Hong Kong, Turkey, and France - were surveyed to gauge scientists' attitudes and experiences. While most scientists claimed international collaboration was important, their actual participation in such collaborations was much lower. We identified the prevalence rates of three types of barriers (political, logistical, and cultural) based on categories developed from previous work. In addition, we identified nine additional categories of barriers. Key barriers to collaboration that scientists identified included lack of funding for international work, restrictions on material and data sharing, and differences in academic standards. Respondents also complained about bias against scholars from emerging or developing countries. Our study highlights areas where efforts could be made to address policy issues, institutional barriers, and national biases to promote more productive collaboration in the global scientific community.


Assuntos
Comportamento Cooperativo , Internacionalidade , Pesquisadores/psicologia , Pesquisa/organização & administração , Sociedades Científicas/organização & administração , Características Culturais , Humanos , Disseminação de Informação/métodos , Idioma , Publicações Periódicas como Assunto/normas , Publicações Periódicas como Assunto/estatística & dados numéricos , Política , Preconceito , Apoio à Pesquisa como Assunto , Sociedades Científicas/normas , Fatores de Tempo
18.
Cancer Cell ; 26(2): 248-61, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25117712

RESUMO

Lin28a/b are RNA-binding proteins that influence stem cell maintenance, metabolism, and oncogenesis. Poorly differentiated, aggressive cancers often overexpress Lin28, but its role in tumor initiation or maintenance has not been definitively addressed. We report that LIN28B overexpression is sufficient to initiate hepatoblastoma and hepatocellular carcinoma in murine models. We also detected Lin28b overexpression in MYC-driven hepatoblastomas, and liver-specific deletion of Lin28a/b reduced tumor burden, extended latency, and prolonged survival. Both intravenous siRNA against Lin28b and conditional Lin28b deletion reduced tumor burden and prolonged survival. Igf2bp proteins are upregulated, and Igf2bp3 is required in the context of LIN28B overexpression to promote growth. Therefore, multiple murine models demonstrate that Lin28b is both sufficient to initiate liver cancer and necessary for its maintenance.


Assuntos
Carcinogênese/metabolismo , Hepatoblastoma/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Hepatoblastoma/patologia , Humanos , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Transgênicos , Oncogenes , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/metabolismo , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA