Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Syst Biol ; 70(4): 756-773, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33057686

RESUMO

Rapid evolutionary radiations are among the most challenging phylogenetic problems, wherein different types of data (e.g., morphology and molecular) or genetic markers (e.g., nuclear and organelle) often yield inconsistent results. The tribe Arundinarieae, that is, the temperate bamboos, is a clade of tetraploid originated 22 Ma and subsequently radiated in East Asia. Previous studies of Arundinarieae have found conflicting relationships and/or low support. Here, we obtain nuclear markers from ddRAD data for 213 Arundinarieae taxa and parallel sampling of chloroplast genomes from genome skimming for 147 taxa. We first assess the feasibility of using ddRAD-seq data for phylogenetic estimates of paleopolyploid and rapidly radiated lineages, optimize clustering thresholds, and analysis workflow for orthology identification. Reference-based ddRAD data assembly approaches perform well and yield strongly supported relationships that are generally concordant with morphology-based taxonomy. We recover five major lineages, two of which are notable (the pachymorph and leptomorph lineages), in that they correspond with distinct rhizome morphologies. By contrast, the phylogeny from chloroplast genomes differed significantly. Based on multiple lines of evidence, the ddRAD tree is favored as the best species tree estimation for temperate bamboos. Using a time-calibrated ddRAD tree, we find that Arundinarieae diversified rapidly around the mid-Miocene corresponding with intensification of the East Asian monsoon and the evolution of key innovations including the leptomorph rhizomes. Our results provide a highly resolved phylogeny of Arundinarieae, shed new light on the radiation and reticulate evolutionary history of this tribe, and provide an empirical example for the study of recalcitrant plant radiations. [Arundinarieae; ddRAD; paleopolyploid; genome skimming; rapid diversification; incongruence.].


Assuntos
Genoma de Cloroplastos , Ásia Oriental , Marcadores Genéticos , Filogenia , Poaceae/genética
2.
Mol Phylogenet Evol ; 146: 106758, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32028031

RESUMO

The Bambusa-Dendrocalamus-Gigantochloa complex (BDG complex) is the most diversified and phylogenetically recalcitrant group of the paleotropical woody bamboos. Species of this complex occur in tropical and subtropical Asia and most of them are of great economic, cultural and ecological value. The lack of resolution achieved through the analyses of previous molecular datasets has long confounded its phylogenetic estimation and generic delimitation. Here, we adopted a ddRAD-seq strategy to investigate phylogenetic relationships of the four main genera (Bambusa, Dendrocalamus, Gigantochloa, and Melocalamus) in the BDG complex. A total of 102 species were sampled, and SNP data were generated. Both MP and ML analyses of the ddRAD-seq data resulted in a well-resolved topology with Gigantochloa and Melocalamus confirmed as monophyletic, and Melocalamus resolved as sister to the rest of the complex. Bambusa and Dendrocalamus were both resolved as paraphyletic. The phylogenetic relationships were mostly supported by morphological evidence including characters of the branch complement, rachilla, lodicules, filaments and stigma. We also generated and assembled complete plastid genomes of 48 representative species. There were conflicts between the plastome and the ddRAD topologies. Our study demonstrated that RAD-seq can be used to reconstruct evolutionary history of lineages such as the bamboos where ancient hybridization and polyploidy play a significant role. The four genera of the BDG complex have a complex evolutionary history which is likely a product of ancient introgression events.


Assuntos
Bambusa/classificação , Poaceae/classificação , Ásia , Bambusa/genética , Evolução Biológica , Genomas de Plastídeos , Hibridização Genética , Filogenia , Poaceae/anatomia & histologia , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Sequência de DNA
3.
Natl Sci Rev ; 8(12): nwab092, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34987840

RESUMO

Prickles act against herbivores, pathogens or mechanical injury, while also preventing water loss. However, whether prickles have new function and the molecular genetics of prickle patterning remain poorly explored. Here, we generated a high-quality reference genome assembly for 'Basye's Thornless' (BT), a prickle-free cultivar of Rosa wichuraiana, to identify genetic elements related to stem prickle development. The BT genome harbors a high level of sequence diversity in itself and with cultivar 'Old Blush' (R. chinensis), a founder genotype in rose domestication. Inheritance of stem prickle density was determined and two QTL were identified. Differentially expressed genes in QTL were involved in water-related functions, suggesting that prickle density may hitchhike with adaptations to moist environments. While the prickle-related gene-regulatory-network (GRN) was highly conserved, the expression variation of key candidate genes was associated with prickle density. Our study provides fundamental resources and insights for genome evolution in the Rosaceae. Ongoing efforts on identification of the molecular bases for key rose traits may lead to improvements for horticultural markets.

4.
Mitochondrial DNA B Resour ; 5(1): 738-739, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33366727

RESUMO

In this study, we firstly reported the complete chloroplast (cp) genome sequences of the Mangifera sylvatica from Nanning, Guangxi province, China. The complete wild mango cp genome size is 158063 bp with a typical small single-copy region (SSC, 18340 bp), a large single-copy region (LSC, 87008 bp) and a pair of inverted repeats (IRs, 26379 bp and 26379 bp respectively). Out of 112 unique annotated genes in mango cp genome, 78 found to be protein coding, 30 to be tRNA and 4 rRNA genes. Besides, we found 51 microsatellite sequences (SSRs) in the cp genome. Sequence alignment and ML analysis of 29 full plastome data revealed M. sylvatica shares the closest relationship with cultivated mango (M. indica) and form a sister group with Rhus chinensis within Anacardiaceae.

5.
Mol Plant ; 12(10): 1353-1365, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31145999

RESUMO

Polyploidization is a major driver of speciation and its importance to plant evolution has been well recognized. Bamboos comprise one diploid herbaceous and three polyploid woody lineages, and are members of the only major subfamily in grasses that diversified in forests, with the woody members having a tree-like lignified culm. In this study, we generated four draft genome assemblies of major bamboo lineages with three different ploidy levels (diploid, tetraploid, and hexaploid). We also constructed a high-density genetic linkage map for a hexaploid species of bamboo, and used a linkage-map-based strategy for genome assembly and identification of subgenomes in polyploids. Further phylogenomic analyses using a large dataset of syntenic genes with expected copies based on ploidy levels revealed that woody bamboos originated subsequent to the divergence of the herbaceous bamboo lineage, and experienced complex reticulate evolution through three independent allopolyploid events involving four extinct diploid ancestors. A shared but distinct subgenome was identified in all polyploid forms, and the progenitor of this subgenome could have been critical in ancient polyploidizations and the origin of woody bamboos. Important genetic clues to the unique flowering behavior and woody trait in bamboos were also found. Taken together, our study provides significant insights into ancient reticulate evolution at the subgenome level in the absence of extant donor species, and offers a potential model scenario for broad-scale study of angiosperm origination by allopolyploidization.


Assuntos
Genômica , Poaceae/genética , Poaceae/metabolismo , Madeira/metabolismo , Flores/crescimento & desenvolvimento , Genoma de Planta/genética , Anotação de Sequência Molecular , Poaceae/crescimento & desenvolvimento , Poliploidia
6.
Science ; 371(6534): 1116, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33707258
7.
Plant Methods ; 12: 39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27493679

RESUMO

BACKGROUND: The double digest restriction-site associated DNA sequencing technology (ddRAD-seq) is a reduced representation sequencing technology by sampling genome-wide enzyme loci developed on the basis of next-generation sequencing. ddRAD-seq has been widely applied to SNP marker development and genotyping on animals, especially on marine animals as the original ddRAD protocol is mainly built and trained based on animal data. However, wide application of ddRAD-seq technology in plant species has not been achieved so far. Here, we aim to develop an optimized ddRAD library preparation protocol be accessible to most angiosperm plant species without much startup pre-experiment and costs. RESULTS: We first tested several combinations of enzymes by in silico analysis of 23 plant species covering 17 families of angiosperm and 1 family of bryophyta and found AvaII + MspI enzyme pair produced consistently higher number of fragments in a broad range of plant species. Then we removed two purifying and one quantifying steps of the original protocol, replaced expensive consumables and apparatuses by conventional experimental apparatuses. Besides, we shortened P1 adapter from 37 to 25 bp and designed a new barcode-adapter system containing 20 pairs of barcodes of varying length. This is an optimized ddRAD strategy for angiosperm plants that is economical, time-saving and requires little technical expertise or investment in laboratory equipment. We refer to this simplified protocol as MiddRAD and we demonstrated the utility and flexibility of our approach by resolving phylogenetic relationships of two genera of woody bamboos (Dendrocalamus and Phyllostachys). Overall our results provide empirical evidence for using this method on different model and non-model plants to produce consistent data. CONCLUSIONS: As MiddRAD adopts an enzyme pair that works for a broad range of angiosperm plants, simplifies library constructing procedure and requires less DNA input, it will greatly facilitate designing a ddRAD project. Our optimization of this method may make ddRAD be widely used in fields of plant population genetics, phylogenetics, phylogeography and molecular breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA