Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.549
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(17): 3726-3743.e24, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37442136

RESUMO

Elucidating the cellular organization of the cerebral cortex is critical for understanding brain structure and function. Using large-scale single-nucleus RNA sequencing and spatial transcriptomic analysis of 143 macaque cortical regions, we obtained a comprehensive atlas of 264 transcriptome-defined cortical cell types and mapped their spatial distribution across the entire cortex. We characterized the cortical layer and region preferences of glutamatergic, GABAergic, and non-neuronal cell types, as well as regional differences in cell-type composition and neighborhood complexity. Notably, we discovered a relationship between the regional distribution of various cell types and the region's hierarchical level in the visual and somatosensory systems. Cross-species comparison of transcriptomic data from human, macaque, and mouse cortices further revealed primate-specific cell types that are enriched in layer 4, with their marker genes expressed in a region-dependent manner. Our data provide a cellular and molecular basis for understanding the evolution, development, aging, and pathogenesis of the primate brain.


Assuntos
Córtex Cerebral , Macaca , Análise de Célula Única , Transcriptoma , Animais , Humanos , Camundongos , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Macaca/metabolismo , Transcriptoma/genética
2.
Cell ; 182(1): 226-244.e17, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649875

RESUMO

Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.


Assuntos
Progressão da Doença , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteogenômica , Fumar/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinógenos/toxicidade , Estudos de Coortes , Citosina Desaminase/metabolismo , Ásia Oriental , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Metaloproteinases da Matriz/metabolismo , Mutação/genética , Análise de Componente Principal
3.
Nature ; 633(8028): 71-76, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39198651

RESUMO

Majorana zero modes (MZMs) are emergent zero-energy topological quasiparticles that are their own antiparticles1,2. Detected MZMs are spatially separated and electrically neutral, so producing hybridization between MZMs is extremely challenging in superconductors3,4. Here, we report the magnetic field response of vortex bound states in superconducting topological crystalline insulator SnTe (001) films. Several MZMs were predicted to coexist in a single vortex due to magnetic mirror symmetry. Using a scanning tunnelling microscope equipped with a three-axis vector magnet, we found that the zero-bias peak (ZBP) in a single vortex exhibits an apparent anisotropic response even though the magnetic field is weak. The ZBP can robustly extend a long distance of up to approximately 100 nm at the (001) surface when the magnetic field is parallel to the ( 1 1 ¯ 0 )-type mirror plane, otherwise it displays an asymmetric splitting. Our systematic simulations demonstrate that the anisotropic response cannot be reproduced with trivial ZBPs. Although the different MZMs cannot be directly distinguished due to the limited energy resolution in our experiments, our comparisons between experimental measurements and theoretical simulations strongly support the existence and hybridization of symmetry-protected multiple MZMs. Our work demonstrates a way to hybridize different MZMs by controlling the orientation of the magnetic field and expands the types of MZM available for tuning topological states.

4.
Nature ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057666

RESUMO

Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months1. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common2. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed. Here we detail human embryonic limb development across space and time using single-cell and spatial transcriptomics. We demonstrate extensive diversification of cells from a few multipotent progenitors to myriad differentiated cell states, including several novel cell populations. We uncover two waves of human muscle development, each characterized by different cell states regulated by separate gene expression programmes, and identify musculin (MSC) as a key transcriptional repressor maintaining muscle stem cell identity. Through assembly of multiple anatomically continuous spatial transcriptomic samples using VisiumStitcher, we map cells across a sagittal section of a whole fetal hindlimb. We reveal a clear anatomical segregation between genes linked to brachydactyly and polysyndactyly, and uncover transcriptionally and spatially distinct populations of the mesenchyme in the autopod. Finally, we perform single-cell RNA sequencing on mouse embryonic limbs to facilitate cross-species developmental comparison, finding substantial homology between the two species.

5.
Nature ; 609(7925): 52-57, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045239

RESUMO

Moiré patterns of transition metal dichalcogenide heterobilayers have proved to be an ideal platform on which to host unusual correlated electronic phases, emerging magnetism and correlated exciton physics. Whereas the existence of new moiré excitonic states is established1-4 through optical measurements, the microscopic nature of these states is still poorly understood, often relying on empirically fit models. Here, combining large-scale first-principles GW (where G and W denote the one-particle Green's function and the screened Coulomb interaction, respectively) plus Bethe-Salpeter calculations and micro-reflection spectroscopy, we identify the nature of the exciton resonances in WSe2/WS2 moiré superlattices, discovering a rich set of moiré excitons that cannot be captured by prevailing continuum models. Our calculations show moiré excitons with distinct characters, including modulated Wannier excitons and previously unidentified intralayer charge-transfer excitons. Signatures of these distinct excitonic characters are confirmed experimentally by the unique carrier-density and magnetic-field dependences of different moiré exciton resonances. Our study highlights the highly non-trivial exciton states that can emerge in transition metal dichalcogenide moiré superlattices, and suggests new ways of tuning many-body physics in moiré systems by engineering excited-states with specific spatial characters.

6.
N Engl J Med ; 390(8): 712-722, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38381674

RESUMO

BACKGROUND: Biomarker changes that occur in the period between normal cognition and the diagnosis of sporadic Alzheimer's disease have not been extensively investigated in longitudinal studies. METHODS: We conducted a multicenter, nested case-control study of Alzheimer's disease biomarkers in cognitively normal participants who were enrolled in the China Cognition and Aging Study from January 2000 through December 2020. A subgroup of these participants underwent testing of cerebrospinal fluid (CSF), cognitive assessments, and brain imaging at 2-year-to-3-year intervals. A total of 648 participants in whom Alzheimer's disease developed were matched with 648 participants who had normal cognition, and the temporal trajectories of CSF biochemical marker concentrations, cognitive testing, and imaging were analyzed in the two groups. RESULTS: The median follow-up was 19.9 years (interquartile range, 19.5 to 20.2). CSF and imaging biomarkers in the Alzheimer's disease group diverged from those in the cognitively normal group at the following estimated number of years before diagnosis: amyloid-beta (Aß)42, 18 years; the ratio of Aß42 to Aß40, 14 years; phosphorylated tau 181, 11 years; total tau, 10 years; neurofilament light chain, 9 years; hippocampal volume, 8 years; and cognitive decline, 6 years. As cognitive impairment progressed, the changes in CSF biomarker levels in the Alzheimer's disease group initially accelerated and then slowed. CONCLUSIONS: In this study involving Chinese participants during the 20 years preceding clinical diagnosis of sporadic Alzheimer's disease, we observed the time courses of CSF biomarkers, the times before diagnosis at which they diverged from the biomarkers from a matched group of participants who remained cognitively normal, and the temporal order in which the biomarkers became abnormal. (Funded by the Key Project of the National Natural Science Foundation of China and others; ClinicalTrials.gov number, NCT03653156.).


Assuntos
Doença de Alzheimer , Biomarcadores , Disfunção Cognitiva , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Proteínas tau/líquido cefalorraquidiano , Seguimentos
7.
Proc Natl Acad Sci U S A ; 121(32): e2403324121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39052850

RESUMO

Proteins play a key role in biological electron transport, but the structure-function relationships governing the electronic properties of peptides are not fully understood. Despite recent progress, understanding the link between peptide conformational flexibility, hierarchical structures, and electron transport pathways has been challenging. Here, we use single-molecule experiments, molecular dynamics (MD) simulations, nonequilibrium Green's function-density functional theory (NEGF-DFT), and unsupervised machine learning to understand the role of secondary structure on electron transport in peptides. Our results reveal a two-state molecular conductance behavior for peptides across several different amino acid sequences. MD simulations and Gaussian mixture modeling are used to show that this two-state molecular conductance behavior arises due to the conformational flexibility of peptide backbones, with a high-conductance state arising due to a more defined secondary structure (beta turn or 310 helices) and a low-conductance state occurring for extended peptide structures. These results highlight the importance of helical conformations on electron transport in peptides. Conformer selection for the peptide structures is rationalized using principal component analysis of intramolecular hydrogen bonding distances along peptide backbones. Molecular conformations from MD simulations are used to model charge transport in NEGF-DFT calculations, and the results are in reasonable qualitative agreement with experiments. Projected density of states calculations and molecular orbital visualizations are further used to understand the role of amino acid side chains on transport. Overall, our results show that secondary structure plays a key role in electron transport in peptides, which provides broad avenues for understanding the electronic properties of proteins.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Estrutura Secundária de Proteína , Transporte de Elétrons , Peptídeos/química , Peptídeos/metabolismo , Ligação de Hidrogênio
8.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39101502

RESUMO

PROteolysis TArgeting Chimeras (PROTACs) has recently emerged as a promising technology. However, the design of rational PROTACs, especially the linker component, remains challenging due to the absence of structure-activity relationships and experimental data. Leveraging the structural characteristics of PROTACs, fragment-based drug design (FBDD) provides a feasible approach for PROTAC research. Concurrently, artificial intelligence-generated content has attracted considerable attention, with diffusion models and Transformers emerging as indispensable tools in this field. In response, we present a new diffusion model, DiffPROTACs, harnessing the power of Transformers to learn and generate new PROTAC linkers based on given ligands. To introduce the essential inductive biases required for molecular generation, we propose the O(3) equivariant graph Transformer module, which augments Transformers with graph neural networks (GNNs), using Transformers to update nodes and GNNs to update the coordinates of PROTAC atoms. DiffPROTACs effectively competes with existing models and achieves comparable performance on two traditional FBDD datasets, ZINC and GEOM. To differentiate the molecular characteristics between PROTACs and traditional small molecules, we fine-tuned the model on our self-built PROTACs dataset, achieving a 93.86% validity rate for generated PROTACs. Additionally, we provide a generated PROTAC database for further research, which can be accessed at https://bailab.siais.shanghaitech.edu.cn/service/DiffPROTACs-generated.tgz. The corresponding code is available at https://github.com/Fenglei104/DiffPROTACs and the server is at https://bailab.siais.shanghaitech.edu.cn/services/diffprotacs.


Assuntos
Aprendizado Profundo , Proteólise , Desenho de Fármacos , Ligantes , Quimera de Direcionamento de Proteólise
9.
Nat Chem Biol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977788

RESUMO

IscB has a similar domain organization to Cas9, but the small size of IscB is better suited for delivery by adeno-associated virus. To improve the low editing efficiency of OgeuIscB (IscB from human gut metagenome) in mammalian cells, we developed high-efficiency miniature base editors by engineering OgeuIscB nickase and its cognate ωRNA, termed IminiBEs. We demonstrated the robust editing efficiency of IminiCBE (67% on average) or IminiABE (52% on average). Fusing non-specific DNA-binding protein Sso7d to IminiBEs increased the editing efficiency of low-efficiency sites by around two- to threefold, and we termed it SIminiBEs. In addition, IminiCBE and SIminiCBE recognize NNRR, NNRY and NNYR target-adjacent motifs, which broaden the canonical NWRRNA target-adjacent motif sites for the wild-type IscB nickase. Overall, IminiBEs and SIminiBEs are efficient miniature base editors for site-specific genomic mutations.

10.
Nucleic Acids Res ; 52(D1): D1355-D1364, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37930837

RESUMO

The metabolic roadmap of drugs (MRD) is a comprehensive atlas for understanding the stepwise and sequential metabolism of certain drug in living organisms. It plays a vital role in lead optimization, personalized medication, and ADMET research. The MRD consists of three main components: (i) the sequential catalyses of drug and its metabolites by different drug-metabolizing enzymes (DMEs), (ii) a comprehensive collection of metabolic reactions along the entire MRD and (iii) a systematic description on efficacy & toxicity for all metabolites of a studied drug. However, there is no database available for describing the comprehensive metabolic roadmaps of drugs. Therefore, in this study, a major update of INTEDE was conducted, which provided the stepwise & sequential metabolic roadmaps for a total of 4701 drugs, and a total of 22 165 metabolic reactions containing 1088 DMEs and 18 882 drug metabolites. Additionally, the INTEDE 2.0 labeled the pharmacological properties (pharmacological activity or toxicity) of metabolites and provided their structural information. Furthermore, 3717 drug metabolism relationships were supplemented (from 7338 to 11 055). All in all, INTEDE 2.0 is highly expected to attract broad interests from related research community and serve as an essential supplement to existing pharmaceutical/biological/chemical databases. INTEDE 2.0 can now be accessible freely without any login requirement at: http://idrblab.org/intede/.


Assuntos
Bases de Dados de Compostos Químicos , Bases de Dados Factuais , Inativação Metabólica , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(47): e2314696120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956301

RESUMO

Enzymes of the radical S-adenosyl-l-methionine (radical SAM, RS) superfamily, the largest in nature, catalyze remarkably diverse reactions initiated by H-atom abstraction. Glycyl radical enzyme activating enzymes (GRE-AEs) are a growing class of RS enzymes that generate the catalytically essential glycyl radical of GREs, which in turn catalyze essential reactions in anaerobic metabolism. Here, we probe the reaction of the GRE-AE pyruvate formate-lyase activating enzyme (PFL-AE) with the peptide substrate RVSG734YAV, which mimics the site of glycyl radical formation on the native substrate, pyruvate formate-lyase. Time-resolved freeze-quench electron paramagnetic resonance spectroscopy shows that at short mixing times reduced PFL-AE + SAM reacts with RVSG734YAV to form the central organometallic intermediate, Ω, in which the adenosyl 5'C is covalently bound to the unique iron of the [4Fe-4S] cluster. Freeze-trapping the reaction at longer times reveals the formation of the peptide G734• glycyl radical product. Of central importance, freeze-quenching at intermediate times reveals that the conversion of Ω to peptide glycyl radical is not concerted. Instead, homolysis of the Ω Fe-C5' bond generates the nominally "free" 5'-dAdo• radical, which is captured here by freeze-trapping. During cryoannealing at 77 K, the 5'-dAdo• directly abstracts an H-atom from the peptide to generate the G734• peptide radical trapped in the PFL-AE active site. These observations reveal the 5'-dAdo• radical to be a well-defined intermediate, caught in the act of substrate H-atom abstraction, providing new insights into the mechanistic steps of radical initiation by RS enzymes.


Assuntos
Proteínas Ferro-Enxofre , S-Adenosilmetionina , S-Adenosilmetionina/química , Acetiltransferases/metabolismo , Metionina , Espectroscopia de Ressonância de Spin Eletrônica , Peptídeos/metabolismo , Proteínas Ferro-Enxofre/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(51): e2314775120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085781

RESUMO

Transition metal dichalcogenide (TMD) moiré superlattices provide an emerging platform to explore various light-induced phenomena. Recently, the discoveries of novel moiré excitons have attracted great interest. The nonlinear optical responses of these systems are however still underexplored. Here, we report investigation of light-induced shift currents (a second-order response generating DC current from optical illumination) in the WSe2/WS2 moiré superlattice. We identify a striking phenomenon of the formation of shift current vortex crystals-i.e., two-dimensional periodic arrays of moiré-scale current vortices and associated magnetic fields with remarkable intensity under laboratory laser setup. Furthermore, we demonstrate high optical tunability of these current vortices-their location, shape, chirality, and magnitude can be tuned by the frequency, polarization, and intensity of the incident light. Electron-hole interactions (excitonic effects) are found to play a crucial role in the generation and nature of the shift current intensity and distribution. Our findings provide a promising all-optical control route to manipulate nanoscale shift current density distributions and magnetic field patterns, as well as shed light on nonlinear optical responses in moiré quantum matter and their possible applications.

13.
J Biol Chem ; 300(2): 105637, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199564

RESUMO

Life adapts to daily environmental changes through circadian rhythms, exhibiting spontaneous oscillations of biological processes. These daily functional oscillations must match the metabolic requirements responding to the time of the day. We focus on the molecular mechanism of how the circadian clock regulates glucose, the primary resource for energy production and other biosynthetic pathways. The complex regulation of the circadian rhythm includes many proteins that control this process at the transcriptional and translational levels and by protein-protein interactions. We have investigated the action of one of these proteins, cryptochrome (CRY), whose elevated mRNA and protein levels repress the function of an activator in the transcription-translation feedback loop, and this activator causes elevated Cry1 mRNA. We used a genome-edited cell line model to investigate downstream genes affected explicitly by the repressor CRY. We found that CRY can repress glycolytic genes, particularly that of the gatekeeper, pyruvate dehydrogenase kinase 1 (Pdk1), decreasing lactate accumulation and glucose utilization. CRY1-mediated decrease of Pdk1 expression can also be observed in a breast cancer cell line MDA-MB-231, whose glycolysis is associated with Pdk1 expression. We also found that exogenous expression of CRY1 in the MDA-MB-231 decreases glucose usage and growth rate. Furthermore, reduced CRY1 levels and the increased phosphorylation of PDK1 substrate were observed when cells were grown in suspension compared to cells grown in adhesion. Our data supports a model that the transcription-translation feedback loop can regulate the glucose metabolic pathway through Pdk1 gene expression according to the time of the day.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Criptocromos , Piruvato Desidrogenase Quinase de Transferência de Acetil , Linhagem Celular , Relógios Circadianos/fisiologia , Criptocromos/metabolismo , RNA Mensageiro/genética , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
14.
J Biol Chem ; : 107760, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39260698

RESUMO

The generation of an active [FeFe]-hydrogenase requires the synthesis of a complex metal center, the H-cluster, by three dedicated maturases: the radical S-adenosyl-l-methionine (SAM) enzymes HydE and HydG, and the GTPase HydF. A key step of [FeFe]-hydrogenase maturation is the synthesis of the dithiomethylamine (DTMA) bridging ligand, a process recently shown to involve the aminomethyl-lipoyl-H-protein from the glycine cleavage system, whose methylamine group originates from serine and ammonium. Here we use functional assays together with electron paramagnetic resonance and electron-nuclear double resonance spectroscopies to show that serine or aspartate together with their respective ammonia-lyase enzymes can provide the nitrogen for DTMA biosynthesis during in vitro [FeFe]-hydrogenase maturation. We also report bioinformatic analysis of the hyd operon, revealing a strong association with genes encoding ammonia-lyases, suggesting important biochemical and metabolic connections. Together, our results provide evidence that ammonia-lyases play an important role in [FeFe]-hydrogenase maturation by delivering the ammonium required for dithiomethylamine ligand synthesis.

15.
Bioinformatics ; 40(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141210

RESUMO

MOTIVATION: The prediction of binding affinity between drug and target is crucial in drug discovery. However, the accuracy of current methods still needs to be improved. On the other hand, most deep learning methods focus only on the prediction of non-covalent (non-bonded) binding molecular systems, but neglect the cases of covalent binding, which has gained increasing attention in the field of drug development. RESULTS: In this work, a new attention-based model, A Transformer Encoder and Fingerprint combined Prediction method for Drug-Target Affinity (TEFDTA) is proposed to predict the binding affinity for bonded and non-bonded drug-target interactions. To deal with such complicated problems, we used different representations for protein and drug molecules, respectively. In detail, an initial framework was built by training our model using the datasets of non-bonded protein-ligand interactions. For the widely used dataset Davis, an additional contribution of this study is that we provide a manually corrected Davis database. The model was subsequently fine-tuned on a smaller dataset of covalent interactions from the CovalentInDB database to optimize performance. The results demonstrate a significant improvement over existing approaches, with an average improvement of 7.6% in predicting non-covalent binding affinity and a remarkable average improvement of 62.9% in predicting covalent binding affinity compared to using BindingDB data alone. At the end, the potential ability of our model to identify activity cliffs was investigated through a case study. The prediction results indicate that our model is sensitive to discriminate the difference of binding affinities arising from small variances in the structures of compounds. AVAILABILITY AND IMPLEMENTATION: The codes and datasets of TEFDTA are available at https://github.com/lizongquan01/TEFDTA.


Assuntos
Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos , Bases de Dados Factuais , Descoberta de Drogas
16.
Mol Psychiatry ; 29(3): 793-808, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145987

RESUMO

Context-induced retrieval of drug withdrawal memory is one of the important reasons for drug relapses. Previous studies have shown that different projection neurons in different brain regions or in the same brain region such as the basolateral amygdala (BLA) participate in context-induced retrieval of drug withdrawal memory. However, whether these different projection neurons participate in the retrieval of drug withdrawal memory with same or different molecular pathways remains a topic for research. The present results showed that (1) BLA neurons projecting to the prelimbic cortex (BLA-PrL) and BLA neurons projecting to the nucleus accumbens (BLA-NAc) participated in context-induced retrieval of morphine withdrawal memory; (2) there was an increase in the expression of Arc and pERK in BLA-NAc neurons, but not in BLA-PrL neurons during context-induced retrieval of morphine withdrawal memory; (3) pERK was the upstream molecule of Arc, whereas D1 receptor was the upstream molecule of pERK in BLA-NAc neurons during context-induced retrieval of morphine withdrawal memory; (4) D1 receptors also strengthened AMPA receptors, but not NMDA receptors, -mediated glutamatergic input to BLA-NAc neurons via pERK during context-induced retrieval of morphine withdrawal memory. These results suggest that different projection neurons of the BLA participate in the retrieval of morphine withdrawal memory with diverse molecular pathways.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Morfina , Neurônios , Núcleo Accumbens , Síndrome de Abstinência a Substâncias , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Masculino , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia , Morfina/farmacologia , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Memória/fisiologia , Receptores de AMPA/metabolismo , Ratos , Dependência de Morfina/metabolismo , Tonsila do Cerebelo/metabolismo , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Vias Neurais/metabolismo , Córtex Pré-Frontal/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101976

RESUMO

Blood-brain barrier (BBB) breakdown and inflammation occurring at the BBB have a key, mainly a deleterious role in the pathophysiology of ischemic stroke. Neddylation is a ubiquitylation-like pathway that is critical in various cellular functions by conjugating neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) to target proteins. However, the roles of neddylation pathway in ischemic stroke remain elusive. Here, we report that NEDD8 conjugation increased during acute phase after ischemic stroke and was present in intravascular and intraparenchymal neutrophils. Inhibition of neddylation by MLN4924, also known as pevonedistat, inactivated cullin-RING E3 ligase (CRL), and reduced brain infarction and improved functional outcomes. MLN4924 treatment induced the accumulation of the CRL substrate neurofibromatosis 1 (NF1). By using virus-mediated NF1 silencing, we show that NF1 knockdown abolished MLN4924-dependent inhibition of neutrophil trafficking. These effects were mediated through activation of endothelial P-selectin and intercellular adhesion molecule-1 (ICAM-1), and blocking antibodies against P-selectin or anti-ICAM-1 antibodies reversed NF1 silencing-induced increase in neutrophil infiltration in MLN4924-treated mice. Furthermore, we found that NF1 silencing blocked MLN4924-afforded BBB protection and neuroprotection through activation of protein kinase C δ (PKCδ), myristoylated alanine-rich C-kinase substrate (MARCKS), and myosin light chain (MLC) in cerebral microvessels after ischemic stroke, and treatment of mice with the PKCδ inhibitor rottlerin reduced this increased BBB permeability. Our study demonstrated that increased neddylation promoted neutrophil trafficking and thus exacerbated injury of the BBB and stroke outcomes. We suggest that the neddylation inhibition may be beneficial in ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Ciclopentanos/farmacologia , Proteína NEDD8/metabolismo , Proteínas do Tecido Nervoso , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Pirimidinas/farmacologia , Ubiquitina-Proteína Ligases , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/enzimologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/enzimologia , Masculino , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo
18.
Eur Heart J ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178138

RESUMO

BACKGROUND AND AIMS: Despite advances in technology and techniques, the recurrence rate of persistent atrial fibrillation (AF) following catheter ablation remains high. The Shensong Yangxin (SSYX) capsule, a renowned traditional Chinese medicine formula, is used in the treatment of cardiac arrhythmias. This trial aimed to investigate whether the SSYX can improve clinical outcomes in patients who have undergone catheter ablation for persistent AF. METHODS: A multi-centre, randomized, double-blind, placebo-controlled clinical trial was conducted at 66 centres in China among 920 patients with persistent AF undergoing first ablation. Participants were randomized to oral SSYX, 1.6 g (.4 g/granule) thrice daily (n = 460), or matched placebo (n = 460) for 12 months. The primary endpoint was recurrent atrial tachyarrhythmias lasting for ≥30 s following a blanking period of 3 months. Secondary endpoints included time to first documented atrial tachyarrhythmias, AF burden, cardioversion, stroke/systemic embolism, changes in echocardiographic parameters, and quality-of-life (QoL) score. Analyses were performed according to the intention-to-treat principle. RESULTS: A total of 920 patients underwent randomization (460 assigned to SSYX group and 460 assigned to placebo group). During the follow-up of 12 months, patients assigned to SSYX had a higher event-free rate from recurrent atrial tachyarrhythmias when compared with the placebo group (12-month Kaplan-Meier event-free rate estimates, 85.5% and 77.7%, respectively; hazard ratio, .6; 95% confidence interval .4-.8; P = .001). Patients assigned to receive SSYX had a better QoL score at 12 months compared to those randomized to placebo. There was no significant difference in the incidence of serious adverse events between the two groups. CONCLUSIONS: Treatment with SSYX following radiofrequency catheter ablation for persistent AF reduced the incidence of recurrent atrial tachyarrhythmias and led to clinically significant improvements in QoL during a 12-month follow-up in a Chinese population.

19.
Nano Lett ; 24(19): 5920-5928, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708934

RESUMO

A significant challenge in direct seawater electrolysis is the rapid deactivation of the cathode due to the large scaling of Mg(OH)2. Herein, we synthesized a Pt-coated highly disordered NiCu alloy (Pt-NiCu alloy) electrode with superior solidophobic behavior, enabling stable hydrogen generation (100 mA cm-2, >1000 h durability) and simultaneous production of Mg(OH)2 (>99.0% purity) in electrolyte enriched with Mg2+ and Ca2+. The unconventional solidophobic property primarily stems from the high surface energy of the NiCu alloy substrate, which facilitates the adsorption of surface water and thereby compels the bulk formation of Mg(OH)2 via homogeneous nucleation. The discovery of this solidophobic electrode will revolutionarily simplify the existing techniques for seawater electrolysis and increase the economic viability for seawater electrolysis.

20.
Nano Lett ; 24(26): 7972-7978, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888269

RESUMO

Despite the weak, van der Waals interlayer coupling, photoinduced charge transfer vertically across atomically thin interfaces can occur within surprisingly fast, sub-50 fs time scales. An early theoretical understanding of charge transfer is based on a noninteracting picture, neglecting excitonic effects that dominate optical properties of such materials. We employ an ab initio many-body perturbation theory approach, which explicitly accounts for the excitons and phonons in the heterostructure. Our large-scale first-principles calculations directly probe the role of exciton-phonon coupling in the charge dynamics of the WS2/MoS2 heterobilayer. We find that the exciton-phonon interaction induced relaxation time of photoexcited excitons at the K valley of MoS2 and WS2 is 67 and 15 fs at 300 K, respectively, which sets a lower bound to the intralayer-to-interlayer exciton transfer time and is consistent with experiment reports. We further show that electron-hole correlations facilitate novel transfer pathways that are otherwise inaccessible to noninteracting electrons and holes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA