RESUMO
We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from â¼250 × 140 × 90 µm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are publicly available, along with tools for programmatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and synapse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample code shows data access and analysis.
Assuntos
Neocórtex , Animais , Camundongos , Microscopia Eletrônica , Neocórtex/fisiologia , Organelas , Células Piramidais/fisiologia , Sinapses/fisiologiaRESUMO
Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections1-3, offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations4,5, and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex ( https://codex.flywire.ai ) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.
Assuntos
Encéfalo , Conectoma , Drosophila melanogaster , Rede Nervosa , Vias Neurais , Neurônios , Animais , Feminino , Encéfalo/fisiologia , Encéfalo/citologia , Encéfalo/anatomia & histologia , Drosophila melanogaster/fisiologia , Drosophila melanogaster/anatomia & histologia , Internet , Modelos Neurológicos , Rede Nervosa/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/citologia , Vias Neurais/anatomia & histologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Neurópilo/fisiologia , Neurópilo/citologia , Neurotransmissores/análise , Neurotransmissores/metabolismo , Sinapses/fisiologiaRESUMO
Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative1-6, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses7 between 139,255 neurons reconstructed from an adult female Drosophila melanogaster8,9. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities10-12. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome-a map of projections between regions-from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.
Assuntos
Encéfalo , Conectoma , Drosophila melanogaster , Vias Neurais , Neurônios , Animais , Feminino , Encéfalo/citologia , Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Drosophila melanogaster/citologia , Vias Eferentes/fisiologia , Vias Eferentes/citologia , Vias Neurais/fisiologia , Vias Neurais/citologia , Neurônios/classificação , Neurônios/citologia , Neurônios/fisiologia , Neurotransmissores/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Células Fotorreceptoras de Invertebrados/citologia , Sinapses/metabolismo , Retroalimentação Sensorial/fisiologiaRESUMO
The processes leading to the N2 + lasing are rather complex and even the population distribution after the pump laser excitation is unknown. In this paper, we study the population distribution at electronic and vibrational levels in N2 + driven by ultra-short laser pulse at the wavelengths of 800 nm and 400 nm by using the quantum-mechanical time-domain incoherent superposition model based on the time-dependent Schrödinger equation and the quasi-classical model assuming instantaneous ionization injection described by density matrix. It is shown that while both models provide qualitatively similar results, the quasi-classical instantaneous ionization injection model underestimates the population inversions corresponding to the optical transitions at 391 nm, 423 nm and 428 nm due to the assumption of quantum mixed states at the ionization time. A fast and accurate correction to this error is proposed. This work solidifies the theoretical models for population at vibrational states in N2 + and paves the way to uncover the mechanism of the N2 + lasing.
RESUMO
Brains comprise complex networks of neurons and connections. Network analysis applied to the wiring diagrams of brains can offer insights into how brains support computations and regulate information flow. The completion of the first whole-brain connectome of an adult Drosophila, the largest connectome to date, containing 130,000 neurons and millions of connections, offers an unprecedented opportunity to analyze its network properties and topological features. To gain insights into local connectivity, we computed the prevalence of two- and three-node network motifs, examined their strengths and neurotransmitter compositions, and compared these topological metrics with wiring diagrams of other animals. We discovered that the network of the fly brain displays rich club organization, with a large population (30% percent of the connectome) of highly connected neurons. We identified subsets of rich club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex and will serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.
RESUMO
Neuronal wiring diagrams reconstructed by electron microscopy1,2,3,4,5 pose new questions about the organization of nervous systems following the time-honored tradition of cross-species comparisons.6,7 The C. elegans connectome has been conceptualized as a sensorimotor circuit that is approximately feedforward,8,9,10,11 starting from sensory neurons proceeding to interneurons and ending with motor neurons. Overrepresentation of a 3-cell motif often known as the "feedforward loop" has provided further evidence for feedforwardness.10,12 Here, we contrast with another sensorimotor wiring diagram that was recently reconstructed from a larval zebrafish brainstem.13 We show that the 3-cycle, another 3-cell motif, is highly overrepresented in the oculomotor module of this wiring diagram. This is a first for any neuronal wiring diagram reconstructed by electron microscopy, whether invertebrate12,14 or mammalian.15,16,17 The 3-cycle of cells is "aligned" with a 3-cycle of neuronal groups in a stochastic block model (SBM)18 of the oculomotor module. However, the cellular cycles exhibit more specificity than can be explained by the group cycles-recurrence to the same neuron is surprisingly common. Cyclic structure could be relevant for theories of oculomotor function that depend on recurrent connectivity. The cyclic structure coexists with the classic vestibulo-ocular reflex arc for horizontal eye movements,19 and could be relevant for recurrent network models of temporal integration by the oculomotor system.20,21.
Assuntos
Caenorhabditis elegans , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Caenorhabditis elegans/fisiologia , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Movimentos Oculares , MamíferosRESUMO
Connections between neurons can be mapped by acquiring and analyzing electron microscopic (EM) brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, yet inadequate for understanding brain function more globally. Here, we present the first neuronal wiring diagram of a whole adult brain, containing 5×107 chemical synapses between ~130,000 neurons reconstructed from a female Drosophila melanogaster. The resource also incorporates annotations of cell classes and types, nerves, hemilineages, and predictions of neurotransmitter identities. Data products are available by download, programmatic access, and interactive browsing and made interoperable with other fly data resources. We show how to derive a projectome, a map of projections between regions, from the connectome. We demonstrate the tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine, and descending neurons), across both hemispheres, and between the central brain and the optic lobes. Tracing from a subset of photoreceptors all the way to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviors. The technologies and open ecosystem of the FlyWire Consortium set the stage for future large-scale connectome projects in other species.