Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Food Sci Technol ; 58(6): 2447-2451, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33967341

RESUMO

Hot-melt extrusion (HME) technology was employed to improve water dispersibility of phytosterol (P) using glycerol (G), lecithin (L), and gum arabic (A) as emulsifiers and stabilizers. The structural properties and water dispersibility of HME products were investigated. In contrast to physical mixtures, better water dispersibility and storage stability were observed for HME products, especially P:L:G:A extrudate. These improvements may be mainly associated with decreased crystallinity of phytosterol due to the occurrence of co-crystallization of phytosterol with glycerol during HME process, as confirmed by DSC and XRD data. In addition, HME-induced lecithin-arabic gum reaction products effectively stabilize phytosterol microparticle in aqueous dispersion by providing a steric hindrance. These results suggest that HME could be an effectively and potentially solvent-free technique to produce water-dispersible phytosterol on a large scale.

2.
J Sci Food Agric ; 99(6): 3176-3185, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30548612

RESUMO

BACKGROUND: During the last decade buckwheat was reported to have positive health effects. The present study investigated a high-polyphenol buckwheat protein (Fagopyrum esculentum Moench) prepared by enzyme-assisted processing, together with its physicochemical properties, in vitro digestibility, and antioxidant activity. RESULTS: Buckwheat protein prepared from the synergistic enzymatic action of α-amylase and amyloglucosidase (E-BWP) had much higher polyphenol content than buckwheat protein prepared by isoelectric precipitation (I-BWP) or salt extraction (S-BWP). Rutin degraded during the process, giving quercetin. The protein constituents and amino acid composition of E-BWP were very similar to those of native buckwheat and were able to meet the WHO/FAO requirements for both children and adults. During in vitro digestion, E-BWP showed anti-digestive behavior with a nitrogen release that was lower than that of I-BWP or S-BWP. The positive effect of the polyphenol content of E-BWP resulted in a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) content and greater reducing activity. CONCLUSION: Buckwheat protein with high polyphenol content was successfully developed by enzyme-assisted processing. It had a well-balanced amino acid profile, antidigestive behavior, and high antioxidant activities. The results suggest that enzyme-assisted processing is promising in the production of polyphenol-enriched cereal protein, contributing higher functionality with good nutritional and antioxidant properties. © 2018 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Fagopyrum/química , Fagopyrum/metabolismo , Glucana 1,4-alfa-Glucosidase/química , Proteínas de Plantas/química , Polifenóis/análise , alfa-Amilases/química , Antioxidantes/metabolismo , Biocatálise , Digestão , Manipulação de Alimentos , Humanos , Proteínas de Plantas/metabolismo , Polifenóis/metabolismo , Sementes/química , Sementes/metabolismo
3.
J Food Sci Technol ; 56(2): 905-913, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30906048

RESUMO

The complexation of corn protein hydrolyzate (CPH) with tannic acid (TA) was utilized to improve the foaming properties of CPH itself, and the air-water interfacial behavior of CPH-TA complex was also investigated. The results showed that the surface hydrophobicity of pure CPH was significantly decreased in bulk solution after the complexation with TA. Compared with pure CPH, the foams stabilized by CPH-TA complex showed higher interfacial thickness between the bubbles, which well explained the better long term stability of the corresponding foams. Therefore, the complexation maintained the good foaming capacity of CPH itself, but considerably increased its foam stability. Moreover, the air-water interfacial behavior study demonstrated that the complexation slightly decreased the interfacial activity of CPH itself, but considerably increased its interfacial viscoelasticity, suggesting more stable of the air-water interface stabilized by CPH-TA complex compared with that stabilized by CPH alone. These findings indicated that foaming properties of the surface active components were closely related with its air-water interfacial behavior. The study suggested that CPH-TA complex could be used as a stabilizer in constructing the peptides-based foams.

4.
Small ; 14(50): e1803602, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30370690

RESUMO

By integrating the characteristics of each therapy modality and material chemistry, a multitherapy modality is put forward: tumor starvation triggered synergism with sensitized chemotherapy. Following starvation-induced amplification of pathological abnormalities in tumors, chemotherapy is arranged to be locally activated and accurately reinforced to perfect multitherapy synergism from spatial and temporal perspectives. To this end, glucose oxidase (GOD) and a hypoxic prodrug of tirapazamine (TPZ) are loaded in acidity-decomposable calcium carbonate (CaCO3 ) nanoparticles concurrently tethered by hyaluronic acid. This hybrid nanotherapeutic shows a strong tendency to accumulate in tumors postinjection due to the cooperation between passive and active targeting mechanisms. The GOD-driven oxidation reaction deprives tumors of glucose for starvation therapy and concomitantly induces tumorous abnormality amplifications including elevated acidity and exacerbated hypoxia. Programmatically, the acidity amplification causes CaCO3 decomposition, offering not only spatial control over the liberation of embedded TPZ just within tumors but also the temporal control over timely chemotherapy initiation to match the occurrence of hypoxia amplification and thus benefiting perfect synergism between starvation therapy and chemotherapy.


Assuntos
Antineoplásicos/química , Carbonato de Cálcio/química , Nanopartículas/química , Pró-Fármacos/química , Tirapazamina/química , Glucose Oxidase/metabolismo , Ácido Hialurônico/química
5.
Nanotechnology ; 29(5): 055101, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29139396

RESUMO

In this study, an oil-soluble Ag2S quantum dot (QD) was synthesized through thermal decomposition using the single-source precursor method, and Pluronic F127 (PF127), a triblock copolymer functionalized with folic acid (FA), was deposited on the surface of the QD, then a water-soluble PF127-FA@Ag2S nanoprobe with targeting ability was fabricated. The as-prepared PF127-FA@Ag2S exhibited spheroidal morphology and high dispersibility, with average diameters of 115 ± 20.7 nm (as observed by transmission electron microscopy). No obvious toxicity of the PF127-FA@Ag2S nanoprobe was found in standard 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and colony-formation assay, indicating good biocompatibility and safety. The resulting PF127-FA@Ag2S exhibited excellent stability between 4 °C-40 °C. Additionally, the capacity of the tumor cell-targeting high contrast enhanced photoacoustic imaging of PF127-FA@Ag2S was verified in comparison with A547 and HeLa cells. In other words, the excellent properties of PF127-FA@Ag2S show great potential in further research for targeting and photoacoustic imaging.


Assuntos
Ácido Fólico/química , Neoplasias/patologia , Técnicas Fotoacústicas/métodos , Poloxâmero/química , Pontos Quânticos/química , Compostos de Prata/química , Células A549 , Morte Celular , Linhagem Celular Tumoral , Difusão Dinâmica da Luz , Células HeLa , Humanos , Óleos/química , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Pontos Quânticos/ultraestrutura , Solubilidade , Espectrofotometria Ultravioleta , Eletricidade Estática
6.
J Nanobiotechnology ; 16(1): 42, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29673352

RESUMO

BACKGROUND: Ag2S has the characteristics of conventional quantum dot such as broad excitation spectrum, narrow emission spectrum, long fluorescence lifetime, strong anti-bleaching ability, and other optical properties. Moreover, since its fluorescence emission is located in the NIR-II region, has stronger penetrating ability for tissue. Ag2S quantum dot has strong absorption during the visible and NIR regions, it has good photothermal and photoacoustic response under certain wavelength excitation. RESULTS: 200 nm aqueous probe Ag2S@DSPE-PEG2000-FA (Ag2S@DP-FA) with good dispersibility and stability was prepared by coating hydrophobic Ag2S with the mixture of folic acid (FA) modified DSPE-PEG2000 (DP) and other polymers, it was found the probe had good fluorescent, photoacoustic and photothermal responses, and a low cell cytotoxicity at 50 µg/mL Ag concentration. Blood biochemical analysis, liver enzyme and tissue histopathological test showed that no significant influence was observed on blood and organs within 15 days after injection of the probe. In vivo and in vitro fluorescence and photoacoustic imaging of the probe further demonstrated that the Ag2S@DP-FA probe had good active targeting ability for tumor. In vivo and in vitro photothermal therapy experiments confirmed that the probe also had good ability of killing tumor by photothermal. CONCLUSIONS: Ag2S@DP-FA was a safe, integrated diagnosis and treatment probe with multi-mode imaging, photothermal therapy and active targeting ability, which had a great application prospect in the early diagnosis and treatment of tumor.


Assuntos
Sondas Moleculares , Imagem Óptica/métodos , Técnicas Fotoacústicas/métodos , Pontos Quânticos , Compostos de Prata , Células A549 , Animais , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sondas Moleculares/química , Sondas Moleculares/toxicidade , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/toxicidade , Fototerapia , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Compostos de Prata/química , Compostos de Prata/toxicidade
7.
J Sci Food Agric ; 98(2): 582-589, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28653331

RESUMO

BACKGROUND: Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans-fat and delivery of functional ingredients. Phytosterols, comprising plant-derived natural steroid compounds, are preferred for oleogel production because they are both natural and healthy. In the present study, phytosterol-based oleogels self-assembled with monoglyceride were studied with respect to tuning volatile release. RESULTS: Microscopy images of the bicomponent oleogels of ß-sitosterol and monoglyceride showed the formation of a new three-dimensional network of entangled crystals and a controllable microstructure. Our analysis from differential scanning calorimetry and small angle X-ray scattering results suggests the self-assembly of ß-sitosterol and monoglyceride via intermolecular hydrogen bonds into spherulitic microstructures. The results showed that the release rate (v0 ), maximum headspace concentrations (Cmax ) and partition coefficients (ka/o ) for oleogels showed a significantly controlled release and were tunable via the microstructure of phytosterol-based oleogels under both dynamic and static conditions. In addition, the solid-like oleogels had interesting thixotropic and thermoresponsive behaviors, probably as a result of intermolecular hydrogen bonding. CONCLUSION: The self-assembly of phytosterol-based oleogels with monoglyceride was attributed to intermolecular hydrogen and is demonstrated to be a promising tunable and functional strategy for delivering flavor compounds. © 2017 Society of Chemical Industry.


Assuntos
Monoglicerídeos/química , Fitosteróis/química , Varredura Diferencial de Calorimetria , Glicerídeos/química , Ligação de Hidrogênio , Compostos Orgânicos/química , Volatilização
8.
J Sci Food Agric ; 96(13): 4449-56, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26841309

RESUMO

BACKGROUND: In this study, soy protein isolate/sugar beet pectin (SPI/SBP) emulsion gels were prepared through an enzymatic gelation process. The effects of emulsifier (SBP, SPI or SPI/SBP complex) and emulsification process on the microstructure, texture, breakdown properties and aroma release behavior of resulting emulsion gels were investigated. RESULTS: Oil emulsification by SBP/SPI complex resulted in a higher amount of emulsifier absorbing on the oil-water interface than by SBP and SPI alone, indicating that a more compact interfacial network was formed. Flocculation of oil droplets was observed and corresponding emulsion gels exhibited lower fracture force and strain when the oil was emulsified by SPI and SBP/SPI complex. Moreover, emulsion gels with small droplets produced a greater quantity of small fragments after mastication. However, microstructure did not have a significant effect on breakdown properties of emulsion gels. Headspace gas chromatography analysis showed that the release rate of ethyl butyrate before and after mastication was significantly lower in emulsion gel with more compact network, but the release of aroma compounds with higher hydrophobicity did not show a significant influence of the microstructure and texture of emulsion gel. CONCLUSION: This finding provides a useful application for designing semi-solid foods with desirable flavor perception. © 2016 Society of Chemical Industry.


Assuntos
Beta vulgaris/química , Emulsificantes/química , Aditivos Alimentares/química , Mastigação , Pectinas/química , Raízes de Plantas/química , Proteínas de Soja/química , Butiratos/análise , Butiratos/química , Caproatos/análise , Caproatos/química , Caprilatos/análise , Caprilatos/química , Fenômenos Químicos , Óleo de Milho/química , Emulsificantes/análise , Emulsões , Aditivos Alimentares/análise , Géis , Temperatura Alta , Humanos , Fenômenos Mecânicos , Odorantes , Tamanho da Partícula , Pectinas/análise , Sensação , Proteínas de Soja/análise , Propriedades de Superfície , Volatilização
9.
J Sci Food Agric ; 96(4): 1121-31, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25801436

RESUMO

BACKGROUND: Due to the differences in structure and composition of glycinin and ß-conglycinin, they exhibit different characteristics during heat treatment. In present study, the thermal aggregation behaviour of glycinin, ß-conglycinin and their isolated sub-units was investigated at pH 7.0. RESULTS: Acidic polypeptides, basic polypeptides, αα' and ß sub-units of soy protein were denatured during the isolation process. The degree of aggregation of protein fractions after heat treatment was in the order: denatured basic polypeptides > native glycinin > denatured ß sub-unit > native ß-conglycinin > denatured acidic polypeptides > denatured αα' sub-units. Glycinin, ß-conglycinin, acidic polypeptides and αα'/ß sub-units exhibited different changing trends of surface hydrophobicity with increasing temperature. The αα' sub-units showed higher ability to suppress thermal aggregation of basic polypeptides than ß sub-units during heat treatment. The ß sub-units were shown to form soluble aggregates with glycinin after heating. CONCLUSION: The interaction mechanism of αα' and ß sub-units heated with basic polypeptides was proposed. For the ß sub-units-basic polypeptides mixed system, more hydrophobic chains were binding together and buried inside during heat treatment, which resulted in lower surface hydrophobicity. The αα' sub-units-basic polypeptides mixed system was considered to be a stable system with higher surface hydrophobicity after being heated.


Assuntos
Peptídeos/química , Proteínas de Soja/química , Eletroforese em Gel de Poliacrilamida , Indústria Alimentícia , Globulinas/química , Temperatura Alta , Humanos , Dobramento de Proteína , Relação Estrutura-Atividade
10.
Zhongguo Zhong Yao Za Zhi ; 41(9): 1685-1692, 2016 May.
Artigo em Zh | MEDLINE | ID: mdl-28891619

RESUMO

"Dida" is one of the most representative commonly used Tibetan medicines in treatment of hepatobilaiary diseases. To analyze and compare the content of 7 effective constituents in 11 species which are used as Dida. Integrated evaluation of them, which supply a basis for the resources exploitation for them. In this paper, most appropriate absorption wavelengths of different natural iridoid compounds, xanthones and oleanolic acid have been performed by using 3D spectrum technique. According to the results, the wavelength 210, 240 and 265 nm were used for detection of 7 effective constituents. By means of calculation, determination of 7 effective constituents indicated good linearity over the linear range with coefficients (r) of 0.999 9 respectively. The recoveries were found in the average range of 99% to 101% with RSD being less than 3%. Normalize and integrate by three-dimension the data. Get their integrated chemical quality index(ICQI). Results suggested that these plants used as Dida in Tibet medicine mostly contain these 7 effective constituents, but the different is notable. The integrated evaluation by the integrated chemical quality index (ICQI) has reference value for quality control.


Assuntos
Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Controle de Qualidade , Iridoides/análise , Medicina Tradicional Tibetana , Ácido Oleanólico/análise , Tibet , Xantonas/análise
11.
J Food Sci Technol ; 53(7): 2923-2932, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27765963

RESUMO

The aims of this work were to construct corn protein hydrolysate (CPH)-based curcumin nanoparticles (Cur NPs) and to compare the colloidal stability, bioaccessibility and antioxidant activity of the Cur NPs stabilized CPH and sodium caseinate (NaCas) respectively. The results indicated that Cur solubility could be considerably improved after the Cur NPs fabrication. The spectroscopy results demonstrated that the solubilization of Cur should be attributed to its complexation with CPH or NaCas. The Cur NPs exhibited good colloidal stability after 1 week's storage but showed smaller (40 nm) size in CPH than in NaCas (100 nm). After lyophilization, the Cur NPs powders showed good rehydration properties and chemical stability, and compared with NaCas, the size of Cur NPs stabilized by CPH was still smaller. Additionally, the Cur NPs exhibited higher chemical stability against the temperature compared with free Cur, and the CPH could protect Cur from degradation more efficiently. Comparing with NaCas, the Cur NPs stabilized by CPH exhibited better bioaccessibility and antioxidant activity. This study demonstrated that CPH may be better than NaCas in Cur NPs fabrication and it opens up the possibility of using hydrophobic protein hydrolysate to construct the NPs delivery system.

12.
Nanotechnology ; 26(31): 315701, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26177713

RESUMO

Multifunctional nanocomposites combining imaging and therapeutic functions have great potential for cancer diagnosis and therapy. In this work, we developed a novel theranostic agent based on hollow gold nanospheres (HGNs) and superparamagnetic iron oxide nanoparticles (SPIO). Taking advantage of the excellent magnetic properties of SPIO and strong near-infrared (NIR) absorption property of HGNs, such nanocomposites were applied to targeted magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) of cancer cells. In vitro results demonstrated they displayed significant contrast enhancement for T2-weighted MRI and strong PAI signal enhancement. Simultaneously, the nanocomposites exhibited a high photothermal effect under the irradiation of the near-infrared laser and can be used as efficient photothermal therapy (PTT) agents for selective killing of cancer cells. All these results indicated that such nanocomposites combined with MRI-PAI and PTT functionality can have great potential for effective cancer diagnosis and therapy.


Assuntos
Meios de Contraste , Terapia com Luz de Baixa Intensidade/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Nanosferas/uso terapêutico , Neoplasias/patologia , Técnicas Fotoacústicas/instrumentação , Ouro/química , Células HeLa , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Células MCF-7 , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/ultraestrutura , Nanocompostos/química , Nanocompostos/uso terapêutico , Nanocompostos/ultraestrutura , Nanosferas/química , Nanosferas/ultraestrutura , Neoplasias/terapia , Tamanho da Partícula , Técnicas Fotoacústicas/métodos
13.
J Nanobiotechnology ; 13: 76, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26510511

RESUMO

BACKGROUND: X-ray computed tomography (CT) imaging can be used to reveal the three-dimensional structure of deep tissue with high spatial resolution. However, it cannot reveal molecular or cellular changes, and has great limitations in terms of specificity and sensitivity. Fluorescence imaging technology is one of the main methods used for the study of molecular events in vivo and has important applications in life science research. Therefore, the combination of CT and fluorescence imaging is an ideal dual-modal molecular imaging method, which can provide data on both molecular function and tissue structure, and has important research value. In a previous study, Bi2S3 nanoparticles were wrapped with quantum dots in SiO2 to generate CT and fluorescence imaging. However, this type of probe led to low survival and caused innegligible in vivo toxicity in mice. Therefore, it is necessary to develop new multifunctional probes that demonstrate biocompatibility and safety in vivo. METHODS: A polyethylene glycol-phospholipid bilayer structure was used to synthesize hybrid clusters containing hydrophobic Bi2S3 nanoparticles and quantum dots for combined CT/fluorescence imaging. Mean particle size, polydispersity index, and zeta potential were used to study the stability over an 8-week test period. In vivo CT and fluorescence imaging experiments were performed, and the in vivo safety of the probe was evaluated, using histopathological, biochemical, and blood analyses. RESULTS: The probe distinctly enhanced the CT contrast and had fluorescence imaging capability. In addition, the nanocomposite hybrid clusters showed a longer circulation time (>4 h) than iobitridol. The results also showed that the Bi2S3-QD@DSPE probe had good biocompatibility and safety, and did not affect normal organ functioning. CONCLUSIONS: Bi2S3-QD@DSPE hybrid clusters exhibited remarkable performance in CT angiography and fluorescence imaging in vivo.


Assuntos
Bismuto/química , Compostos de Cádmio/química , Nanopartículas/química , Imagem Óptica , Pontos Quânticos/química , Compostos de Selênio/química , Sulfetos/química , Tomografia Computadorizada por Raios X , Compostos de Zinco/química , Animais , Injeções Intravenosas , Fígado/enzimologia , Camundongos Endogâmicos BALB C , Imagem Multimodal , Nanopartículas/ultraestrutura , Especificidade de Órgãos , Imagens de Fantasmas , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Imagem Corporal Total
14.
Nanotechnology ; 25(29): 295103, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24990410

RESUMO

Probe bismuth sulfide modified with Pluronic F127 (Bi2S3-PF127), which has high biocompatibility and dispersibility, is synthesized using triblock copolymer Pluronic F127 to modify hydrophobic Bi2S3 nanoparticles that are prepared by a hot injection method. TEM results show that most of the probe has a length of about 14.85 ± 1.70 nm and a breadth of about 4.79 ± 0.63 nm. After injected into the tail vein of a mouse, the probe has obvious CT contrast enhancement capability from x-ray CT imaging results. Meanwhile, the probe's in vivo toxicity is also studied. It is found that hematoxylin and eosin stains of major organs have no change. A biochemical analysis (alanine aminotransferase and aspartate aminotransferase) prove the probe has no adverse effects. The results of a blood analysis (white blood cell count, red blood cell count, hemoglobin, and platelet count) are also normal. The biological distribution of Bi by ICP-AES shows that most of nanoparticles are cleaned out after injection 48 h, and the circulation half-life of the probe is 5.0 h, suggesting that Bi2S3-PF127 has a long circulation and indicating that the Bi2S3-PF127 probe has good biocompatibility and safety.


Assuntos
Materiais Biocompatíveis/síntese química , Meios de Contraste/síntese química , Nanopartículas/química , Tomografia Computadorizada por Raios X/métodos , Animais , Materiais Biocompatíveis/efeitos adversos , Bismuto/química , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/efeitos adversos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/efeitos adversos , Poloxâmero/química , Sulfetos/química
15.
J Sci Food Agric ; 93(2): 316-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22777841

RESUMO

BACKGROUND: Several methods have been reported for the conjugation of proteins with polysaccharides. Protein-polysaccharide conjugates can be formed by traditional dry heating, but this process is not attractive from an industrial viewpoint, and no commercial conjugates have been manufactured in this way. In the present study, in order to develop a more practical reaction method, macromolecular crowding was used to attach polysaccharides to proteins. RESULTS: Soy protein isolate-dextran conjugates (SDCs) were prepared via the initial stage of the Maillard reaction in macromolecular crowding conditions. The impact of various processing conditions on the formation of SDCs was investigated. The optimal conditions chosen from the experiments were a soy protein isolate/dextran ratio of 1:1 (w/w), a pH of 6.5, a reaction temperature of 60 °C and a reaction time of 30 h. Circular dichroism spectroscopy showed that the secondary and tertiary structures of the conjugates were changed significantly. Structural flexibility increased, allowing better display of their functional characteristics. The conjugates had a composition with various sizes, especially macromolecules, according to gel permeation chromatography. Thermal analysis showed that the thermal stability of the conjugates was improved. CONCLUSION: The production of SDCs under macromolecular crowding conditions appears to be an effective and promising technique, representing an advance over classic protein glycosylation methods.


Assuntos
Dextranos/química , Tecnologia de Alimentos , Alimentos Formulados/análise , Proteínas de Vegetais Comestíveis/química , Proteínas de Soja/química , Varredura Diferencial de Calorimetria , Fenômenos Químicos , Dicroísmo Circular , Carboidratos da Dieta/análise , Emulsões , Glicosilação , Temperatura Alta , Concentração de Íons de Hidrogênio , Reação de Maillard , Fenômenos Mecânicos , Proteínas de Vegetais Comestíveis/isolamento & purificação , Maleabilidade , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Soja/isolamento & purificação , Fatores de Tempo
16.
Front Immunol ; 14: 1044353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776899

RESUMO

Background: Immunotherapy has been approved for the treatment of metastatic colorectal cancer. The efficacy and safety of neoadjuvant immunotherapy for the treatment of non-metastatic colorectal cancer remains unclear. We tried to explore clinical effect of neoadjuvant immunotherapy in the treatment of non-metastatic colorectal cancer. Methods: We searched the databases (PubMed, Wanfang Embase, Cochrane Library and China National Knowledge Infrastructure databases) to obtain suitable articles up to September 2022. The primary outcomes of pathological complete response (pCRs), major pathological response (MPR), objective response rate (ORR), R0-resection and anus preserving rate were collected and evaluated. Secordary outcomes (pCRs and MPR) of subgroup analysis between deficient mismatch repair/microsatellite instability-high group (dMMR/MSI-H) and proficient mismatch repair/microsatellite stable group (pMMR/MSS) and outcomes for rectal cancer were analyzed for the final results. Results: We included ten articles and 410 cases of non-metastatic colorectal cancer with neoadjuvant immunotherapy. There were 113 (27.5%) cases with the dMMR/MSI-H status and 167 (40.7%) cases with the pMMR/MSS status. pCRs was found in 167/373 (44.6%) patients (ES: 0.49, 95% CI: 0.36 to 0.62, P<0.01, chi2 = 65.3, P<0.01, I 2 = 86.2%) and MPR was found in 194/304 (63.8%) patients (ES: 0.66, 95% CI: 0.54 to 0.78, P<0.01, chi2 = 42.55, P<0.01, I 2 = 81.2%) with the random-effects model and huge heterogeneity. In the subgroup analysis, pCRs was higher in the dMMR/MSI-H group than the pMMR/MSS group in the fixed-effects model with minimal heterogeneity (OR: 3.55, 95% CI: 1.74 to 7.27, P<0.01, chi2 = 1.86, P=0.6, I 2 = 0%). pCRs was found in 58/172 (33.9%) rectal cancer patients (ES: 0.33, 95% CI: 0.26 to 0.40, P<0.01, chi2 = 3.04, P=0.55, I 2 = 0%) with the fixed-effects model and little heterogeneity. Conclusion: Neoadjuvant immunotherapy could increase pCRs and MPR rate for non-metastatic colorectal cancer. Neoadjuvant immunotherapy could achieve better pCRs rate in dMMR/MSI-H group than in the pMMR/MSS group. Neoadjuvant immunotherapy could be another treatment option for non-metastatic colorectal cancer. Systematic review registration: https://www.crd.york.ac.uk/prospero/#myprospero, identifier CRD42022350523.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Neoplasias Colorretais/terapia , Neoplasias Colorretais/tratamento farmacológico , Terapia Neoadjuvante , Neoplasias do Colo/patologia , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Instabilidade de Microssatélites
17.
J Agric Food Chem ; 71(32): 12289-12299, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37548190

RESUMO

Double emulsions hold great potential for various applications due to their compartmentalized internal structures. However, achieving their long-term physical stability remains a challenging task. Here, we present a simple one-step method for producing stable oil-in-water-in-oil (O/W/O) double emulsions using biocompatible gliadin/ethyl cellulose complex particles as the sole stabilizer. The resulting O/W/O systems serve as effective platforms for encapsulating enzymes and as templates for synthesizing porous microspheres. We investigated the impact of particle concentration and water fraction on the properties of Pickering O/W/O emulsions. Our results demonstrate that the number and volume of inner oil droplets increased proportionally with both the water fraction and particle concentration after a 60-day storage period. Moreover, the catalytic reaction rate of the encapsulated lipase within the double emulsion exhibited a significant acceleration, achieving a substrate conversion of 80.9% within 15 min. Remarkably, the encapsulated enzyme showed excellent recyclability, enabling up to 10 cycles of reuse. Additionally, by utilizing the O/W/O systems as templates, we successfully obtained porous microspheres whose size can be controlled by the outer water droplet. These findings have significant implications for the future design of Pickering complex emulsion-based systems, opening avenues for extensive applications in pharmaceuticals, food, cosmetics, material synthesis, and (bio)catalysis.


Assuntos
Celulose , Gliadina , Emulsões/química , Gliadina/química , Celulose/química , Excipientes , Água/química , Tamanho da Partícula
18.
Colloids Surf B Biointerfaces ; 225: 113244, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905836

RESUMO

Oxidative stress caused by environmental exposures results in numerous skin diseases. Phloretin (PHL) is often used to relieve various skin symptoms, however, precipitation or crystallization of PHL in aqueous systems limits its ability to diffuse through the stratum corneum, making it difficult to exert effect at the target. To address this challenge, we herein report a method for the generation of core-shell nanostructure (G-LSS) via the growth of sericin crust around gliadin nanoparticle as a topical nanocarrier of PHL to improve its cutaneous bioavailability. Physicochemical performance, morphology, stability, and antioxidant activity of the nanoparticles were characterized. G-LSS-PHL exhibited uniformed spherical nanostructures with the robust encapsulation on PHL (∼90 %). This strategy protected PHL from UV-induced degradation, facilitating to inhibit erythrocyte hemolysis and quench free radicals in a dose-dependent manner. Transdermal delivery experiments and porcine skin fluorescence imaging indicated that G-LSS facilitated the penetration of PHL across the epidermis layer of skin to reach deep-seated sites, and promoted cumulative turnover of PHL with a 2.0-fold increase. Cell cytotoxicity and uptake assay confirmed that as-prepared nanostructure was nontoxic to HSFs, and promoted cellular absorption of PHL. Therefore, this work opened up new promising avenues for developing robust antioxidant nanostructure for topical applications.


Assuntos
Nanopartículas , Sericinas , Animais , Suínos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Sericinas/farmacologia , Gliadina , Floretina/farmacologia , Floretina/química , Pele , Administração Cutânea , Nanopartículas/química
19.
J Agric Food Chem ; 71(1): 749-759, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534616

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 FAs) are essential nutrients and are considered effective in improving human health. Recent studies highlight the importance of the combination of n-3 FAs and polyphenols for limiting the oxidation of n-3 FAs and exhibiting synergistic beneficial effects. Herein, we developed a novel formulation technology to prepare oleogels that could be used for the codelivery of n-3 FAs and polyphenols with high loading efficacy and oxidative stability. These oleogels are made from algal oil with polyphenol-enriched whey protein microgel (WPM) particles as gelling agents via simple and scalable ball milling technology. The oxidative status, fatty acid composition, and volatiles of protein oleogels during accelerated storage were systematically assessed by stoichiometry and gas chromatography-mass spectrometry. These results showed that protein oleogels could overcome several challenges associated with the formulation of n-3 oils, including long-term oxidative stability and improved sensory and textural properties. The protein oleogel system could provide an excellent convenience for formulating multiple nutrients and nutraceuticals with integrating health effects, which are expected to be used in the care of highly vulnerable populations, including children, the elderly, and patients.


Assuntos
Ácidos Graxos Ômega-3 , Polifenóis , Criança , Humanos , Idoso , Compostos Orgânicos/química , Ácidos Graxos Ômega-3/química , Ácidos Graxos/química
20.
Int J Biol Macromol ; 208: 486-493, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35304200

RESUMO

A gelling strategy for HP was proposed in this study, ammonium sulfate (AS) as a co-solute could induce the gelling of HP in acidic environment. The solubility and Zeta potential of HP dramatically decreased in AS solution, which indicated AS could promote the aggregation of HP. The rheological results confirmed the gelling of HP (G' > G″) with AS: 25-30 wt% and pH ≤ 3.0, and the gel strength is mainly depended on HP rather than AS concentration. Smaller AS crystals (SEM) and reduced T2 values (LF-NMR) were observed in HP gels, suggested the gel network of HP could limit the migration of AS and water. Finally, it was found that the release process of NH4+ in HP + AS gel was lagged behind that of pure AS, which verified the potential of HP + AS gel in the field of sustained-release fertilizers.


Assuntos
Pectinas , Preparações de Ação Retardada , Géis/química , Pectinas/química , Reologia , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA