Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prev Med ; 185: 108042, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878800

RESUMO

OBJECTIVE: We aimed to assess the secular trends in cardiovascular health (CVH) among U.S. adults with different glycemic statuses based on the Life's Essential 8 (LE8). METHODS: This cross-sectional study used nationally representative data from 6 cycles of the National Health and Nutrition Examination Surveys between 2007 and 2018. Survey-weighted linear models were used to assess time trends in LE8 scores. Stratified analyses and sensitivity analyses were conducted to validate the stability of the results. RESULTS: A total of 23,616 participants were included in this study. From 2007 to 2018, there was no significant improvement in overall CVH and the proportion of ideal CVH among participants with diabetes and prediabetes. We observed an opposite trend between health behavior and health factors in the diabetes group, mainly in increasing physical activity scores and sleep scores (P for trend<0.001), and declining BMI scores [difference, -6.81 (95% CI, -12.82 to -0.80)] and blood glucose scores [difference, -6.41 (95% CI, -9.86 to -2.96)]. Dietary health remained at a consistently low level among participants with different glycemic status. The blood lipid scores in the prediabetes group improved but were still at a lower level than other groups. Education/income differences persist in the CVH of participants with diabetes or prediabetes, especially in health behavior factors. Sensitivity analyses of the absolute difference and change in proportion showed a consistent trend. CONCLUSIONS: Trends in CVH among participants with diabetes or prediabetes were suboptimal from 2007 to 2018, with persistent education/income disparities.


Assuntos
Glicemia , Doenças Cardiovasculares , Inquéritos Nutricionais , Humanos , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Doenças Cardiovasculares/epidemiologia , Adulto , Glicemia/análise , Comportamentos Relacionados com a Saúde , Estado Pré-Diabético/epidemiologia , Exercício Físico , Diabetes Mellitus/epidemiologia , Idoso
2.
Front Microbiol ; 15: 1410272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132134

RESUMO

Background: The gut microbiota (GM) is widely acknowledged to have a significant impact on cardiovascular health and may act as a residual risk factor affecting cardiac structure and function. However, the causal relationship between GM and cardiac structure and function remains unclear. Objective: This study aims to employ a two-sample Mendelian randomization (MR) approach to investigate the causal association between GM and cardiac structure and function. Methods: Data on 119 GM genera were sourced from a genome-wide association study (GWAS) meta-analysis (13,266 European participants) conducted by the MiBioGen consortium, while data on 16 parameters of cardiac structure and function were obtained from the UK Biobank's GWAS of cardiac magnetic resonance imaging (up to 41,135 European participants). Inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods were utilized for causal association assessments, with sensitivity analyses conducted to reinforce the findings. Finally, biological annotation was performed on the GWAS data of GM and cardiac phenotypes with causal associations to explore potential mechanisms. Results: The MR analysis, predominantly based on the IVW model, revealed 93 causal associations between the genetically predicted abundance of 44 GM genera and 16 cardiac structure and function parameters. These associations maintained consistent directions in MR-Egger and WM models, with no evidence of pleiotropy detected. Biological annotations suggest that GM may influence cardiac structure and function through pathways involved in myocardial cell development, cardiac contractility, and apoptosis. Conclusion: The MR analysis supports a causal association between certain abundances of genetically predicted GM and cardiac structure and function, suggesting that GM could be a residual risk factor impacting cardiac phenotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA