RESUMO
An enduring question in evolutionary biology concerns the degree to which episodes of convergent trait evolution depend on the same genetic programs, particularly over long timescales. In this work, we genetically dissected repeated origins and losses of prickles-sharp epidermal projections-that convergently evolved in numerous plant lineages. Mutations in a cytokinin hormone biosynthetic gene caused at least 16 independent losses of prickles in eggplants and wild relatives in the genus Solanum. Homologs underlie prickle formation across angiosperms that collectively diverged more than 150 million years ago, including rice and roses. By developing new Solanum genetic systems, we leveraged this discovery to eliminate prickles in a wild species and an indigenously foraged berry. Our findings implicate a shared hormone activation genetic program underlying evolutionarily widespread and recurrent instances of plant morphological innovation.
Assuntos
Evolução Biológica , Citocininas , Genes de Plantas , Epiderme Vegetal , Solanum , Citocininas/biossíntese , Citocininas/genética , Evolução Molecular , Mutação , Oryza/genética , Filogenia , Epiderme Vegetal/anatomia & histologia , Epiderme Vegetal/genética , Solanum/anatomia & histologia , Solanum/genéticaRESUMO
Since the early 19th century, a substantial amount of jujube (Ziziphus spp.) germplasm has been introduced from China and Europe into the United States. However, due to a lack of passport data, cultivar mislabeling is common and the genetic background of the introduced germplasm remains unknown. In the present study, a low-density SNP array was employed to genotype 204 jujube trees sampled from multiple locations in New Mexico, Texas, Missouri, and Kentucky. Multilocus matching of SNP profiles revealed a significant rate of genetic redundancy among these jujube samples. A total of 14 synonymous groups were detected, comprising 48 accessions. Bayesian clustering analysis and neighbor-joining tree partitioned the US jujube germplasm into two major clusters. The first cluster included cultivated genotypes (Ziziphus jujuba Mill.), whereas the other major cluster comprised the wild/sour jujube (Ziziphus spinosa Hu.). The results also revealed a unique jujube population at Fabens/Tornillo, Texas, and a semi-naturalized population at Tucumcari, NM. These findings will provide valuable guidance to jujube growers and researchers on the effective utilization of jujube germplasm in the horticultural industry.
RESUMO
Jujube is a nutritious fruit, and is high in vitamin C, fiber, phenolics, flavonoids, nucleotides, and organic acids. It is both an important food and a source of traditional medicine. Metabolomics can reveal metabolic differences between Ziziphus jujuba fruits from different jujube cultivars and growth sites. In the fall of 2022, mature fresh fruit of eleven cultivars from replicated trials at three sites in New Mexico-Leyendecker, Los Lunas, and Alcalde-were sampled from September to October for an untargeted metabolomics study. The 11 cultivars were Alcalde 1, Dongzao, Jinsi (JS), Jinkuiwang (JKW), Jixin, Kongfucui (KFC), Lang, Li, Maya, Shanxi Li, and Zaocuiwang (ZCW). Based on the LC-MS/MS analysis, there were 1315 compounds detected with amino acids and derivatives (20.15%) and flavonoids (15.44%) as dominant categories. The results reveal that the cultivar was the dominant factor in metabolite profiles, while the location was secondary. A pairwise comparison of cultivar metabolomes revealed that two pairs had fewer differential metabolites (i.e., Li/Shanxi Li and JS/JKW) than all the other pairs, highlighting that pairwise metabolic comparison can be applied for cultivar fingerprinting. Differential metabolite analysis also showed that half of drying cultivars have up-regulated lipid metabolites compared to fresh or multi-purpose fruit cultivars and that specialized metabolites vary significantly between cultivars from 35.3% (Dongzao/ZCW) to 56.7% (Jixin/KFC). An exemplary analyte matching sedative cyclopeptide alkaloid sanjoinine A was only detected in the Jinsi and Jinkuiwang cultivars. Overall, our metabolic analysis of the jujube cultivar's mature fruits provides the largest resource of jujube fruit metabolomes to date and will inform cultivar selection for nutritional and medicinal research and for fruit metabolic breeding.
RESUMO
Jujube, commonly known as the Chinese date, is a nutritious fruit with medicinal importance. Fresh jujube fruits have a shelf life of about ten days in ambient conditions that can be extended by drying. However, nutrition preservation varies with the drying method and parameters selected. We studied total phenolic content (TPC), proanthocyanidins (PA), vitamin C, cyclic adenosine monophosphate (cAMP), and antioxidant activities in jujube fruits dried with freeze-drying (FD), convective oven drying (OD) at 50 °C, 60 °C, and 75 °C, and sun drying (SD) with FD as a control. The cultivars used for this study were 'Capri' and 'Xiang' from Las Cruces in 2019, and 'Sugarcane', 'Lang', and 'Sherwood' from Las Cruces and Los Lunas, New Mexico, in 2020. Freeze-drying had the highest of all nutrient components tested, the best estimates of mature jujube fruits' nutrient contents. Compared with FD, the majority of PA (96-99%) and vitamin C (90-93%) was lost during SD or OD processes. The retention rates of antioxidant activities: DPPH and FRAP were higher in OD at 50/60 °C than SD. SD retained a higher cAMP level than OD at 50/60 °C in both years. The increase in oven drying temperature from 60 °C to 75 °C significantly decreased TPC, PA, antioxidant activities, and cAMP.
RESUMO
Sirtuin 4 (SIRT4) is one of seven mammalian sirtuins that possesses ADP-ribosyltransferase, lipoamidase and deacylase activities and plays indispensable role in metabolic regulation. However, the role of SIRT4 in the retina is not clearly understood. The purpose of this study was to explore the location and function of SIRT4 in the retina. Therefore, immunofluorescence was used to analyze the localization of SIRT4 in rat, mouse and human retinas. Western blotting was used to assess SIRT4 and glutamine synthetase (GS) protein expression at different developmental stages in C57BL/6 mice retinas. We further analyzed the retinal structure, electrophysiological function and the expression of GS protein in SIRT4-deficient mice. Excitotoxicity was caused by intravitreal injection of glutamate (50 nmol) in mice with long-term intraperitoneal injection of resveratrol (20 mg/Kg), and then retinas were subjected to Western blotting and paraffin section staining to analyze the effect of SIRT4 on excitotoxicity. We show that SIRT4 co-locates with Müller glial cell markers (GS and vimentin). The protein expression pattern of SIRT4 was similar to that of GS, and both increased with development. There were no significant retinal structure or electrophysiological function changes in 2-month SIRT4-deficient mice, while the expression of GS protein was decreased. Moreover, long-term administration of resveratrol can upregulate the expression of SIRT4 and GS while reducing the retinal injury caused by excessive glutamate. These results suggest that SIRT4 is highly expressed in retinal Müller glial cells and is relevant to the expression of GS. SIRT4 does not appear to be essential in retinal development, but resveratrol, as an activator of SIRT4, can upregulate GS protein expression and protect the retina from excitotoxicity.
RESUMO
Jujube (Ziziphus jujuba Mill.), or Chinese date, is the most important species of Rhamnaceae, a large cosmopolitan family, and is one of the oldest cultivated fruit trees in the world. It originates from the middle and lower reaches of the Yellow River, the 'mother river' of the Chinese people. It is distributed in at least 48 countries on all continents except Antarctica and is becoming increasingly important, especially in arid and semiarid marginal lands. Based on a systematic analysis of the unique characteristics of jujube, we suggest that it deserves to be recognized as a superfruit. We summarized historical research achievements from the past 3000 years and reviewed recent research advances since 1949 in seven fields, including genome sequencing and application, germplasm resources and systematic taxonomy, breeding and genetics, cultivation theory and techniques, pest control, postharvest physiology and techniques, and nutrition and processing. Based on the challenges facing the jujube industry, we discuss eight research aspects to be focused on in the future.