RESUMO
For effective restoration, conservation of Ussruri whitefish Coregonus ussuriensis Berg and coping with global climate change, effects of environmental temperature on Ussruri whitefish urgently need to be explored. In current study, the effects of different acclimation temperatures on the growth, digestive physiology, antioxidant ability, liver transcriptional responses and intestinal microflora patterns of Ussruri whitefish were investigated. Ussruri whitefish (15.20 g ± 1.23 g) were reared for 42 days under different acclimation temperatures, i.e., 10, 13, 16, 19, 22 and 25 °C, respectively. Result first determined 28 °C as the semi-lethal temperature in order to design the temperature gradient test. Highest main gain rate (MGR) and specific growth rate (SGR) were observed in fish group having acclimation temperature of 19 °C. Significantly decrease (P < 0.05) in triglyceride (TG) content appeared at 19 °C as compared to the 10 °C and 13 °C temperature groups. 19 °C notablely increased protease activities of stomach and intestine and intestinal lipase and amylase activities. 19 °C group obtained the highest activities of chloramphnicol acetyltransferase (CAT) and total antioxidant capacity (T-AOC) and higher activities of superoxide dismutase (SOD). The intestinal microflora composition was most conducive to maintaining overall intestinal health when the temperature was 19 °C, compared to 10 °C and 25 °C. Ussruri whitefish exposed to 10 °C and 25 °C possessed the lower Lactobacillus abundance compared to exposure to 19 °C. Temperature down to 10 °C or up to 25 °C, respectively, triggered cold stress and heat stress, which leading to impairment in intestinal digestion, liver antioxidant capacity and intestinal microflora structure. Liver transcriptome response to 10 °C, 19 °C and 25 °C revealed that Ussruri whitefish might require the initiation of endoplasmic reticulum stress to correct protein damage from cold-temperature and high-temperature stress, and it was speculated that DNAJB11 could be regarded as a biomarker of cold stress response.Based on the quadratic regression analysis of MGR and SGR against temperature, the optimal acclamation temperature were, respectively, 18.0 °C and 18.1 °C. Our findings provide valuable theoretical insights for an in-depth understanding of temperature acclimation mechanisms and laid the foundation for conservation and development of Ussruri whitefish germplasm resources.
Assuntos
Aclimatação , Antioxidantes , Digestão , Microbioma Gastrointestinal , Fígado , Salmonidae , Transcriptoma , Animais , Antioxidantes/metabolismo , Salmonidae/fisiologia , Salmonidae/genética , TemperaturaRESUMO
Antimicrobial peptides are immune system molecules existing in different organisms including mollusks, crustaceans and vertebrates. Hepcidins are a group of cysteine rich antimicrobial peptides, which plays an important role in fish response to a variety of pathogens. In this study, we cloned and identified Hepcidin from the Coregonus ussuriensis Berg, and its functions in vivo and in vitro was investigated. Our results showed that, CuHepc contains a 267 bp coding sequence (CDS) region that encodes 88 putative amino acids with a molecular weight of 9.77 kD. Hepcidin transcripts were most abundant in the liver of healthy C. ussuriensis Berg. The synthesized Hepcidin peptide exhibited a wide range of antibacterial activity against Gram-positive and Gram-negative bacteria in vitro, and the results of in vivo bacterial attack assays showed that the CuHepc gene was differentially up-regulated in the six tissues investigated after infection with Aeromonas hydrophila. To analyze the changes in protein levels in C. ussuriensis, we generated Hepc polyclonal antibodies in rabbits and verified that the protein expression was increased after bacterial infection with Western blot assay. MIC assay results showed a geometric mean value of 5.513 µM for CuHepc peptide. In the in vivo experiment, immune-related genes IL-10, NF-κB, TLR3 were up-regulated post-infection CuHepc peptide in liver and intestine. Finally, CuHepc peptide reduced the tissues microbial load compared to infection with Aeromonas hydrophila. The above results indicate that Hepc plays a role in the immune response of C. ussuriensis to exogenous disturbances, indicate that CuHepc might act a candidate for modulation of the innate immune system in C. ussuriensis.
Assuntos
Doenças dos Peixes , Salmonidae , Sequência de Aminoácidos , Animais , Antibacterianos , Peptídeos Antimicrobianos , Proteínas de Peixes/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Hepcidinas/química , Filogenia , CoelhosRESUMO
Hepcidin, a hepatic antimicrobial peptide, is a key player of the nonspecific immune system. The structure of hepcidin gene from brown trout (Bthepc) has been characterized at the molecular level. The 1158-bp mRNA generates a coding sequence (CDS) of 267 bp, which encodes an 88-amino acid protein. Molecular evolution analysis classified Bthepc to the family Salmonidae. Amino acid sequence homologies between Bthepc and hepcidin in other species such as Oncorhynchus mykiss, Salmo salar, and Hucho taimen were found to be 93.18%, 96.59%, and 92.05% respectively. The mature peptide and the signal peptide of Bthepc are made of 25 and 24 amino acids, respectively. Similar to the other species, eight conserved cysteines in the mature peptide of Bthepc are held together by four disulphide bonds. Expression profiling of Bthepc indicated its highest expression in the liver. Further, iron levels or inflammation did not induce the age-dependent expression of Bthepc. Bthepc mRNA expression analysis in six immune tissues (liver, gill, spleen, skin, head kidney and intestine) indicated different levels of increase when challenged with Aeromonas salmonicida and Aeromonas hydrophila. The antimicrobial activity of synthetic Bthepc to typical pathogens was verified in vitro. In addition, Bthepc showed moderate haemolytic activity to mammalian erythrocytes. The antimicrobial activity of Bthepc was attributed to the disruption of the bacterial outer membrane integrity, which was evident from our scanning electron microscopy results. In summary, hepcidin gene of brown trout was characterized, and its antimicrobial activity was verified on different levels.
Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Hepcidinas/genética , Hepcidinas/imunologia , Imunidade Inata/genética , Truta/genética , Truta/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Hepcidinas/química , Filogenia , Alinhamento de Sequência/veterináriaRESUMO
Hepcidin, a cysteine-rich antimicrobial peptide, is an important effector molecule in the innate immune system. Recently, Brachymystax lenok has become to be a valuable cold-water fish in China, particularly as the wild resources are rapidly declining. In this study, the hepcidin gene of Brachymystax lenok (Blhepc) has been cloned. The 870-bp mRNA contains a coding sequence (CDS) of 267 bp that encodes 88 amino acid residues. Amino acid sequence identities of Blhepc with hepcidin in Oncorhynchus mykiss, Salmo salar, and Hucho taimen were found to be 93.18%, 89.77% and 93.18%, respectively. Phylogenetic analysis indicated that Blhepc was clustered in the family Salmonidae. The putative signal peptide and the mature peptide contained 24 and 25 amino acid residues, respectively. The RXXR motif for recruitment of propeptide convertase was identified upstream of the mature peptide of Blhepc by sequence analysis. The N-terminal amino acid residues of the mature Blhepc peptide were Q-SH-L, a structure involved in regulating iron metabolism. Eight conserved cysteine residues in the mature peptide were held together by four disulfide bonds. Expression profiling of Blhepc indicated its highest level in the liver; its expression was stronger in males than in similar-aged females. Moreover, its expression in the liver increased significantly with age. Expression of Blhepc in six immune tissues showed increase in various degrees when challenged with Aeromonas salmonicida and Aeromonas hydrophila. A synthetic Blhepc mature peptide was validated to have significant antimicrobial activity against gram-negative and gram-positive bacteria and fungi in vitro. These results show that Blhepc may be an important component in the innate immunity of Brachymystax lenok, which could provide antimicrobial activities against invading pathogens.