Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7929): 994-997, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952714

RESUMO

Accurate and timely detection of recombinant lineages is crucial for interpreting genetic variation, reconstructing epidemic spread, identifying selection and variants of interest, and accurately performing phylogenetic analyses1-4. During the SARS-CoV-2 pandemic, genomic data generation has exceeded the capacities of existing analysis platforms, thereby crippling real-time analysis of viral evolution5. Here, we use a new phylogenomic method to search a nearly comprehensive SARS-CoV-2 phylogeny for recombinant lineages. In a 1.6 million sample tree from May 2021, we identify 589 recombination events, which indicate that around 2.7% of sequenced SARS-CoV-2 genomes have detectable recombinant ancestry. Recombination breakpoints are inferred to occur disproportionately in the 3' portion of the genome that contains the spike protein. Our results highlight the need for timely analyses of recombination for pinpointing the emergence of recombinant lineages with the potential to increase transmissibility or virulence of the virus. We anticipate that this approach will empower comprehensive real-time tracking of viral recombination during the SARS-CoV-2 pandemic and beyond.


Assuntos
COVID-19 , Genoma Viral , Pandemias , Filogenia , Recombinação Genética , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Genoma Viral/genética , Humanos , Mutação , Recombinação Genética/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Seleção Genética/genética , Glicoproteína da Espícula de Coronavírus/genética , Virulência/genética
2.
Proc Natl Acad Sci U S A ; 120(49): e2312039120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015847

RESUMO

In both humans and NOD mice, type 1 diabetes (T1D) develops from the autoimmune destruction of pancreatic beta cells by T cells. Interactions between both helper CD4+ and cytotoxic CD8+ T cells are essential for T1D development in NOD mice. Previous work has indicated that pathogenic T cells arise from deleterious interactions between relatively common genes which regulate aspects of T cell activation/effector function (Ctla4, Tnfrsf9, Il2/Il21), peptide presentation (H2-A g7, B2m), and T cell receptor (TCR) signaling (Ptpn22). Here, we used a combination of subcongenic mapping and a CRISPR/Cas9 screen to identify the NOD-encoded mammary tumor virus (Mtv)3 provirus as a genetic element affecting CD4+/CD8+ T cell interactions through an additional mechanism, altering the TCR repertoire. Mtv3 encodes a superantigen (SAg) that deletes the majority of Vß3+ thymocytes in NOD mice. Ablating Mtv3 and restoring Vß3+ T cells has no effect on spontaneous T1D development in NOD mice. However, transferring Mtv3 to C57BL/6 (B6) mice congenic for the NOD H2 g7 MHC haplotype (B6.H2 g7) completely blocks their normal susceptibility to T1D mediated by transferred CD8+ T cells transgenically expressing AI4 or NY8.3 TCRs. The entire genetic effect is manifested by Vß3+CD4+ T cells, which unless deleted by Mtv3, accumulate in insulitic lesions triggering in B6 background mice the pathogenic activation of diabetogenic CD8+ T cells. Our findings provide evidence that endogenous Mtv SAgs can influence autoimmune responses. Furthermore, since most common mouse strains have gaps in their TCR Vß repertoire due to Mtvs, it raises questions about the role of Mtvs in other mouse models designed to reflect human immune disorders.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Humanos , Animais , Linfócitos T CD8-Positivos , Camundongos Endogâmicos NOD , Vírus do Tumor Mamário do Camundongo , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD4-Positivos , Camundongos Transgênicos
3.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36151740

RESUMO

Drug discovery and development is a complex and costly process. Machine learning approaches are being investigated to help improve the effectiveness and speed of multiple stages of the drug discovery pipeline. Of these, those that use Knowledge Graphs (KG) have promise in many tasks, including drug repurposing, drug toxicity prediction and target gene-disease prioritization. In a drug discovery KG, crucial elements including genes, diseases and drugs are represented as entities, while relationships between them indicate an interaction. However, to construct high-quality KGs, suitable data are required. In this review, we detail publicly available sources suitable for use in constructing drug discovery focused KGs. We aim to help guide machine learning and KG practitioners who are interested in applying new techniques to the drug discovery field, but who may be unfamiliar with the relevant data sources. The datasets are selected via strict criteria, categorized according to the primary type of information contained within and are considered based upon what information could be extracted to build a KG. We then present a comparative analysis of existing public drug discovery KGs and an evaluation of selected motivating case studies from the literature. Additionally, we raise numerous and unique challenges and issues associated with the domain and its datasets, while also highlighting key future research directions. We hope this review will motivate KGs use in solving key and emerging questions in the drug discovery domain.


Assuntos
Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Descoberta de Drogas , Conhecimento , Armazenamento e Recuperação da Informação
4.
Bioinformatics ; 39(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37651464

RESUMO

MOTIVATION: Identifying and tracking recombinant strains of SARS-CoV-2 is critical to understanding the evolution of the virus and controlling its spread. But confidently identifying SARS-CoV-2 recombinants from thousands of new genome sequences that are being shared online every day is quite challenging, causing many recombinants to be missed or suffer from weeks of delay in being formally identified while undergoing expert curation. RESULTS: We present RIVET-a software pipeline and visual platform that takes advantage of recent algorithmic advances in recombination inference to comprehensively and sensitively search for potential SARS-CoV-2 recombinants and organize the relevant information in a web interface that would help greatly accelerate the process of identifying and tracking recombinants. AVAILABILITY AND IMPLEMENTATION: RIVET-based web interface displaying the most updated analysis of potential SARS-CoV-2 recombinants is available at https://rivet.ucsd.edu/. RIVET's frontend and backend code is freely available under the MIT license at https://github.com/TurakhiaLab/rivet and the documentation for RIVET is available at https://turakhialab.github.io/rivet/. The inputs necessary for running RIVET's backend workflow for SARS-CoV-2 are available through a public database maintained and updated daily by UCSC (https://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/).


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Bases de Dados Factuais , Documentação , Software
5.
Bioconjug Chem ; 35(3): 277-285, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417023

RESUMO

Peptides and proteins undergo crucial modifications to alter their physicochemical properties to expand their applications in diverse fields. Various techniques, such as unnatural amino acid incorporation, enzyme catalysis, and chemoselective methods, have been employed for site-selective peptide and protein modification. While traditional methods remain valuable, advancement in host-guest chemistry introduces innovative and promising approaches for the selective modification of peptides and proteins. Macrocycles exhibit robust binding affinities, particularly with natural amino acids, which facilitates their use in selectively binding to specific sequences. This distinctive property endows macrocycles with the potential for modification of target peptides and proteins. This review provides a comprehensive overview of strategies utilizing macrocycles for the selective modification of peptides and proteins. These strategies unlock new possibilities for constructing antibody-drug conjugates and stabilizing volatile medications.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Proteínas/química , Aminoácidos/química , Processamento de Proteína Pós-Traducional
6.
Syst Biol ; 72(5): 1039-1051, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37232476

RESUMO

Phylogenetics has been foundational to SARS-CoV-2 research and public health policy, assisting in genomic surveillance, contact tracing, and assessing emergence and spread of new variants. However, phylogenetic analyses of SARS-CoV-2 have often relied on tools designed for de novo phylogenetic inference, in which all data are collected before any analysis is performed and the phylogeny is inferred once from scratch. SARS-CoV-2 data sets do not fit this mold. There are currently over 14 million sequenced SARS-CoV-2 genomes in online databases, with tens of thousands of new genomes added every day. Continuous data collection, combined with the public health relevance of SARS-CoV-2, invites an "online" approach to phylogenetics, in which new samples are added to existing phylogenetic trees every day. The extremely dense sampling of SARS-CoV-2 genomes also invites a comparison between likelihood and parsimony approaches to phylogenetic inference. Maximum likelihood (ML) and pseudo-ML methods may be more accurate when there are multiple changes at a single site on a single branch, but this accuracy comes at a large computational cost, and the dense sampling of SARS-CoV-2 genomes means that these instances will be extremely rare because each internal branch is expected to be extremely short. Therefore, it may be that approaches based on maximum parsimony (MP) are sufficiently accurate for reconstructing phylogenies of SARS-CoV-2, and their simplicity means that they can be applied to much larger data sets. Here, we evaluate the performance of de novo and online phylogenetic approaches, as well as ML, pseudo-ML, and MP frameworks for inferring large and dense SARS-CoV-2 phylogenies. Overall, we find that online phylogenetics produces similar phylogenetic trees to de novo analyses for SARS-CoV-2, and that MP optimization with UShER and matOptimize produces equivalent SARS-CoV-2 phylogenies to some of the most popular ML and pseudo-ML inference tools. MP optimization with UShER and matOptimize is thousands of times faster than presently available implementations of ML and online phylogenetics is faster than de novo inference. Our results therefore suggest that parsimony-based methods like UShER and matOptimize represent an accurate and more practical alternative to established ML implementations for large SARS-CoV-2 phylogenies and could be successfully applied to other similar data sets with particularly dense sampling and short branch lengths.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Filogenia , Probabilidade , Genômica
7.
Environ Res ; 250: 118474, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38368920

RESUMO

Dual-source drinking water distribution systems (DWDS) over single-source water supply systems are becoming more practical in providing water for megacities. However, the more complex water supply problems are also generated, especially at the hydraulic junction. Herein, we have sampled for a one-year and analyzed the water quality at the hydraulic junction of a dual-source DWDS. The results show that visible changes in drinking water quality, including turbidity, pH, UV254, DOC, residual chlorine, and trihalomethanes (TMHs), are observed at the sample point between 10 and 12 km to one drinking water plant. The average concentration of residual chlorine decreases from 0.74 ± 0.05 mg/L to 0.31 ± 0.11 mg/L during the water supplied from 0 to 10 km and then increases to 0.75 ± 0.05 mg/L at the end of 22 km. Whereas the THMs shows an opposite trend, the concentration reaches to a peak level at hydraulic junction area (10-12 km). According to parallel factor (PARAFAC) and high-performance size-exclusion chromatography (HPSEC) analysis, organic matters vary significantly during water distribution, and tryptophan-like substances and amino acids are closely related to the level of THMs. The hydraulic junction area is confirmed to be located at 10-12 km based on the water quality variation. Furthermore, data-driven models are established by machine learning (ML) with test R2 higher than 0.8 for THMs prediction. And the SHAP analysis explains the model results and identifies the positive (water temperature and water supply distance) and negative (residual chlorine and pH) key factors influencing the THMs formation. This study conducts a deep understanding of water quality at the hydraulic junction areas and establishes predictive models for THMs formation in dual-sources DWDS.


Assuntos
Água Potável , Aprendizado de Máquina , Qualidade da Água , Abastecimento de Água , Água Potável/química , Água Potável/análise , Trialometanos/análise , Modelos Teóricos , Poluentes Químicos da Água/análise , Cloro/análise
8.
BMC Musculoskelet Disord ; 25(1): 118, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336663

RESUMO

BACKGROUND: Intervertebral disc calcification (IDC) combined with calcification in children has been sporadically reported, while ossification of the posterior longitudinal ligament (OPLL) in the cervical spine in pediatric patients is exceedingly rare. The aim of this study is to investigate the potential prognosis and outcomes associated with this condition. CASE PRESENTATION: We present an unusual case involving a 10-year-old Chinese child diagnosed with calcified cervical disc herniation and ossification of the posterior longitudinal ligament. Conservative treatment measures were implemented, and at the 1-month and 6-month follow-up, the patient's pain exhibited significant improvement. Subsequent cervical MRI and CT scans revealed the complete disappearance of OPLL and substantial absorption of the calcified disc. During the three-month follow-up, CT demonstrated slight residual disc calcification, however, the patient remained asymptomatic with no discernible limitation in cervical motion. CONCLUSIONS: We conducted a comprehensive review of several cases presenting with the same diagnosis. It is noteworthy that IDC combined with OPLL in children constitutes a rare clinical entity. Despite imaging indications of potential spinal canal occupation, the majority of such cases demonstrate complete absorption following conservative treatment, with OPLL exhibiting a faster absorption rate than calcified discs.


Assuntos
Calcinose , Condrocalcinose , Degeneração do Disco Intervertebral , Disco Intervertebral , Ossificação do Ligamento Longitudinal Posterior , Humanos , Criança , Ligamentos Longitudinais/diagnóstico por imagem , Osteogênese , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/diagnóstico por imagem , Ossificação do Ligamento Longitudinal Posterior/complicações , Ossificação do Ligamento Longitudinal Posterior/diagnóstico por imagem , Ossificação do Ligamento Longitudinal Posterior/terapia , Calcinose/complicações , Calcinose/diagnóstico por imagem , Calcinose/terapia , Condrocalcinose/complicações , Vértebras Cervicais/diagnóstico por imagem , Disco Intervertebral/diagnóstico por imagem
9.
Angew Chem Int Ed Engl ; 63(14): e202317570, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366960

RESUMO

Nucleophilic substitutions are fundamentally important transformations in synthetic organic chemistry. Despite the substantial advances in bimolecular nucleophilic substitutions (SN2) at saturated carbon centers, analogous SN2 reaction at the amide nitrogen atom remains extremely limited. Here we report an SN2 substitution method at the amide nitrogen atom with amine nucleophiles for nitrogen-nitrogen (N-N) bond formation that leads to a novel strategy toward biologically and medicinally important hydrazide derivatives. We found the use of sulfonate-leaving groups at the amide nitrogen atom played a pivotal role in the reaction. This new N-N coupling reaction allows the use of O-tosyl hydroxamates as electrophiles and readily available amines, including acyclic aliphatic amines and saturated N-heterocycles as nucleophiles. The reaction features mild conditions, broad substrate scope (>80 examples), excellent functional group tolerability, and scalability. The method is applicable to late-stage modification of various approved drug molecules, thus enabling complex hydrazide scaffold synthesis.

10.
J Cell Biochem ; 124(2): 221-238, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502529

RESUMO

Although the aberrant activity of fibroblast growth factor receptor 3 (FGFR3) is implicated in various cancers, the reported kinase inhibitors of FGFR3 tend to cause side effects resulting from the inhibitory activity on vascular endothelial growth factor receptor 2 (VEGFR2). Therefore, it is necessary to find a novel high-selective inhibitor of FGFR3 over VEGFR2 from the small-molecule compound database. In this study, integrated virtual screening protocols were established to screen for selective inhibitors of FGFR3 over VEGFR2 in Drugbank and Asinex databases by combining three-dimensional pharmacophore model, molecular docking, molecular dynamics (MD) simulation, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations. Finally, it is found that Asinex-5082, as an octahydropyrrolo[3,2-b] pyridin derivative, has larger binding free energy with FGFR3 (-39.3 kcal/mol) than reference drug Erdafitinib (-29.9 kcal/mol), while cannot bind with VEGFR2, resulting in considerable inhibitory selectivity. This is because Asinex-5082, unlike Erdafitinib, has not m-dimethoxybenzene with large steric hindrance, thus can enter the larger ATP-binding pocket of FGFR3 with DFG-in conformation to form hydrophobic interaction with residues Met529, Ile539, and Tyr557 as well as hydrogen bond with Ala558. On the other hand, due to the fact that the benzodioxane and N-heterocyclic rings are connected by carbonyl (C=O), Asinex-5082 cannot rotate freely so as to enter the smaller ATP binding pocket of VEGFR2 on the DFG-out conformation. The lead molecule Asinex-5082 may facilitate the rational design and development of novel selective inhibitors of FGFR3 over VEGFR2 as anticancer drugs.


Assuntos
Inibidores de Proteínas Quinases , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Simulação de Acoplamento Molecular , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular , Simulação de Dinâmica Molecular , Trifosfato de Adenosina , Ligantes
11.
J Am Chem Soc ; 145(1): 53-57, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36573889

RESUMO

Gibberellins (GAs) are important plant hormones, but some of their family members are in extremely limited natural supply including GA18. Herein, we report a concise synthesis of (-)-GA18 methyl ester, a member of the C20 gibberellins, from commercially available and cheap andrographolide. Our synthesis features an intramolecular ene reaction to form the C ring, an oxidative cleavage followed by aldol condensation to realize a ring contraction and form the challenging trans-hydrindane (AB ring), and a photochemical [2+2] cycloaddition accompanied by a subsequent SmI2-mediated skeletal rearrangement to construct the methylenebicyclo[3.2.1]octanol moiety (CD ring).


Assuntos
Ésteres , Giberelinas , Estereoisomerismo , Ciclização , Reguladores de Crescimento de Plantas
12.
J Am Chem Soc ; 145(44): 24338-24348, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37880928

RESUMO

Carbon-carbon coupling electrochemistry on a conventional copper (Cu) catalyst still undergoes low selectivity among many different multicarbon (C2+) chemicals, posing a grand challenge to achieve a single C2+ product. Here, we demonstrate a laser irradiation synthesis of a gerhardtite mineral, Cu2(OH)3NO3, as a catalyst precursor to make a Cu catalyst with abundant stacking faults under reducing conditions. Such structural perturbation modulates electronic microenvironments of Cu, leading to improved d-electron back-donation to the antibonding orbital of *CO intermediates and thus strengthening *CO adsorption. With increased *CO coverage on the defect-rich Cu, we report an acetate selectivity of 56 ± 2% (compared to 31 ± 1% for conventional Cu) and a partial current density of 222 ± 7 mA per square centimeter in CO electroreduction. When run at 400 mA per square centimeter for 40 h in a flow reactor, this catalyst produces 68.3 mmol of acetate throughout. This work highlights the value of a Cu-containing mineral phase in accessing suitable structures for improved selectivity to a single desired C2+ product.

13.
Bioinformatics ; 38(15): 3734-3740, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35731204

RESUMO

MOTIVATION: Phylogenetic tree optimization is necessary for precise analysis of evolutionary and transmission dynamics, but existing tools are inadequate for handling the scale and pace of data produced during the coronavirus disease 2019 (COVID-19) pandemic. One transformative approach, online phylogenetics, aims to incrementally add samples to an ever-growing phylogeny, but there are no previously existing approaches that can efficiently optimize this vast phylogeny under the time constraints of the pandemic. RESULTS: Here, we present matOptimize, a fast and memory-efficient phylogenetic tree optimization tool based on parsimony that can be parallelized across multiple CPU threads and nodes, and provides orders of magnitude improvement in runtime and peak memory usage compared to existing state-of-the-art methods. We have developed this method particularly to address the pressing need during the COVID-19 pandemic for daily maintenance and optimization of a comprehensive SARS-CoV-2 phylogeny. matOptimize is currently helping refine on a daily basis possibly the largest-ever phylogenetic tree, containing millions of SARS-CoV-2 sequences. AVAILABILITY AND IMPLEMENTATION: The matOptimize code is freely available as part of the UShER package (https://github.com/yatisht/usher) and can also be installed via bioconda (https://bioconda.github.io/recipes/usher/README.html). All scripts we used to perform the experiments in this manuscript are available at https://github.com/yceh/matOptimize-experiments. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Filogenia , SARS-CoV-2/genética , Pandemias , Software
14.
Gastrointest Endosc ; 97(4): 684-693, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36403805

RESUMO

BACKGROUND AND AIMS: We aimed to establish a modified model of the Kyoto classification score and verify its accuracy for predicting Helicobacter pylori (HP) infection during endoscopy. METHODS: Patients who underwent gastroscopy from June 2020 to March 2021 were included in this study. Atrophy, intestinal metaplasia, hypertrophy of the gastric fold, nodularity, diffuse redness, sticky mucus, spotty redness, xanthoma, map-like redness, fundic gland polyp, and regular arrangement of collecting venules (RAC) were recorded according to the Kyoto classification of gastritis. The HP infection status of participants was determined by a 13C breath test, anti-HP antibody, and histopathologic hematoxylin and eosin staining. The modified Kyoto classification scoring model was established based on univariate analysis and logistic regression analysis. The modified scoring model was used to judge the status of HP infection in patients undergoing gastroscopy from July to September 2021 and to evaluate the accuracy of the prediction. RESULTS: Of 667 participants in the derivation dataset, 326 cases had HP infection and 341 cases did not. Atrophy, hypertrophy of the gastric fold, nodularity, diffuse redness, sticky mucus, and spotty redness were associated with HP current infection. Thus, a new scoring model, termed the modified Kyoto classification scoring model, was constructed that included atrophy, hypertrophy of the gastric fold, nodularity, diffuse redness, sticky mucus, spotty redness, fundic gland polyp, and RAC as indicators. To test the model, 808 subjects, including 251 HP-positive patients, comprised the validation dataset. CONCLUSIONS: The modified Kyoto classification scoring model improved the accuracy of endoscopic determination of HP current infection and has clinical application potential in the Chinese population.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Humanos , Gastrite/diagnóstico , Gastrite/patologia , Gastroscopia , Mucosa Gástrica/patologia , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/patologia , Metaplasia/patologia , Atrofia/patologia
15.
Pharmazie ; 78(9): 196-200, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38037218

RESUMO

Endoplasmic reticulum stress (ER stress) is suggested to promote cardiomyocyte apoptosis and ultimately lead to ischemic injury. Inhibition of ER stress-induced apoptosis may be a therapeutic strategy for MI injury. Astragaloside-IV (AST) from Astragalus membranaceus (Fisch) Bge, was reported to have cardioprotective properties. In this study, we investigated the protective effect of AST on cardiomyocytes against hypoxia injury by regulating ER stress and inhibiting apoptosis. H9c2 cardiomyocytes were divided into three groups, normal group, hypoxia group and AST group. Cell viability was determined by CCK-8 assay. Intracellular reactive oxygen species (ROS) production was detected by DCFH-DA (2,7- dichloro-dihydrofluorescein diacetate) florescent staining. The study showed that AST treatment could significantly increase the cell viability of H9c2 cells exposed to hypoxia. Furthermore, AST could restrain cell apoptosis and decrease the production of ROS. Compared with normal group, the protein levels of Bax, caspase-3, caspase-9, GRP78, p-eIF2α, and CHOP were enhanced in the hypoxia group, whereas the protein level of Bcl-2 was dramatically reduced. Compared with hypoxia group, AST markedly inhibited the phosphorylation of eIF2α and the expression of caspase-3, caspase-9 and CHOP, and promoted the protein expression of Bcl-2. Thus, AST can inhibit the ER stress-mediated apoptosis, partly through the eIF2α/CHOP pathway suppression to inhibit ER stress.


Assuntos
Fator de Iniciação 2 em Eucariotos , Miócitos Cardíacos , Humanos , Caspase 3/metabolismo , Caspase 9/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/farmacologia , Estresse do Retículo Endoplasmático , Transdução de Sinais , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Hipóxia/tratamento farmacológico , Apoptose
16.
J Immunol ; 205(7): 1763-1777, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32868408

RESUMO

The CD27-CD70 costimulatory pathway is essential for the full activation of T cells, but some studies show that blocking this pathway exacerbates certain autoimmune disorders. In this study, we report on the impact of CD27-CD70 signaling on disease progression in the NOD mouse model of type 1 diabetes (T1D). Specifically, our data demonstrate that CD70 ablation alters thymocyte selection and increases circulating T cell levels. CD27 signaling was particularly important for the thymic development and peripheral homeostasis of Foxp3+Helios+ regulatory T cells, which likely accounts for our finding that CD70-deficient NOD mice develop more-aggressive T1D onset. Interestingly, we found that CD27 signaling suppresses the thymic development and effector functions of T1D-protective invariant NKT cells. Thus, rather than providing costimulatory signals, the CD27-CD70 axis may represent a coinhibitory pathway for this immunoregulatory T cell population. Moreover, we showed that a CD27 agonist Ab reversed the effects of CD70 ablation, indicating that the phenotypes observed in CD70-deficient mice were likely due to a lack of CD27 signaling. Collectively, our results demonstrate that the CD27-CD70 costimulatory pathway regulates the differentiation program of multiple T cell subsets involved in T1D development and may be subject to therapeutic targeting.


Assuntos
Ligante CD27/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Células T Matadoras Naturais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Ligante CD27/genética , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imunomodulação , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Transdução de Sinais , Fatores de Transcrição/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
17.
Biotechnol Lett ; 44(1): 59-76, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34997407

RESUMO

Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9, Adenine base editor (ABE) convert single A·T pairs to G·C pairs in the genome without generating DNA double-strand breaks, and this method has higher accuracy and biosafety in pig genetic modification. However, the application of ABE in pig gene knockout is limited by protospacer-adjacent motif sequences and the base-editing window. Alternative mRNA splicing is an important mechanism underlying the formation of proteins with diverse functions in eukaryotes. Spliceosome recognizes the conservative sequences of splice donors and acceptors in a precursor mRNA. Mutations in these conservative sequences induce exon skipping, leading to proteins with novel functions or to gene inactivation due to frameshift mutations. In this study, adenine base-editing-mediated exon skipping was used to expand the application of ABE in the generation of gene knockout pigs. We first constructed a modified "all-in-one" ABE vector suitable for porcine somatic cell transfection that contained an ABE for single-base editing and an sgRNA expression cassette. The "all-in-one" ABE vector induced efficient sgRNA-dependent A-to-G conversions in porcine cells during single base-editing of multiple endogenous gene loci. Subsequently, an ABE system was designed for single adenine editing of the conservative splice acceptor site (AG sequence at the 3' end of the intron 5) and splice donor site (GT sequence at the 5' end of the intron 6) in the porcine gene GHR; this method achieved highly efficient A-to-G conversion at the cellular level. Then, porcine single-cell colonies carrying a biallelic A-to-G conversion in the splice acceptor site in the intron 5 of GHR were generated. RT-PCR indicated exon 6 skipped at the mRNA level. Western blotting revealed GHR protein loss, and gene sequencing showed no sgRNA-dependent off-target effects. These results demonstrate accurate adenine base-editing-mediated exon skipping and gene knockout in porcine cells. This is the first proof-of-concept study of adenine base-editing-mediated exon skipping for gene regulation in pigs, and this work provides a new strategy for accurate and safe genetic modification of pigs for agricultural and medical applications.


Assuntos
Adenina , Edição de Genes , Adenina/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Éxons/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes , Suínos
18.
BMC Bioinformatics ; 22(Suppl 3): 521, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696748

RESUMO

BACKGROUND: Liver cancer is a common malignant tumor in China, with high mortality. Its occurrence and development were thoroughly studied by high-throughput expression microarray, which produced abundant data on gene expression, mRNA quantification and the clinical data of liver cancer. However, the hub genes, which can be served as biomarkers for diagnosis and treatment of early liver cancer, are not well screened. RESULTS: Here we present a new method for getting 6 key genes, aiming to diagnose and treat the early liver cancer. We firstly analyzed the different expression microarrays based on TCGA database, and a total of 1564 differentially expressed genes were obtained, of which 1400 were up-regulated and 164 were down-regulated. Furthermore, these differentially expressed genes were studied by using GO and KEGG enrichment analysis, a PPI network was constructed based on the STRING database, and 15 hub genes were obtained. Finally, 15 hub genes were verified by applying the survival analysis method on Oncomine database, and 6 key genes were ultimately identified, including PLK1, CDC20, CCNB2, BUB1, MAD2L1 and CCNA2. The robustness analysis of four independent data sets verifies the accuracy of the key gene's classification of the data set. CONCLUSIONS: Although there are complicated differences between cancer and normal cells in gene functions, cancer cells could be differentiated in case that a group of special genes expresses abnormally. Here we presented a new method to identify the 6 key genes for diagnosis and treatment of early liver cancer, and these key genes can help us understand the pathogenesis of liver cancer more deeply.


Assuntos
Biologia Computacional , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/genética , Mapas de Interação de Proteínas
19.
Exp Eye Res ; 204: 108450, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497690

RESUMO

PURPOSE: This study examined the patterned treatment of corneal collagen cross-linking (CXL) for keratoconus to reduce the complications caused by ultraviolet (UV) irradiation. By modifying the method of UV irradiation during the cross-linking process, cross-linking with a special structure is achieved, and the cross-linking effect is analyzed and compared to that of traditional cross-linking. By constructing an animal model of keratoconus, the process and effect of corneal cross-linking can be investigated more fundamentally. These studies provide valuable references for future cross-linking precision improvement and specialization. METHOD: By injecting exogenous collagenase into the corneal stroma of rabbits, the balance between collagenase and collagenase inhibitor in the corneal stroma was disrupted, the collagen fiber structure of the cornea was broken to simulate the pathogenesis of keratoconus, and an animal model of keratoconus was thus constructed. Two custom cross-linking patterns were designed with reference to the cable dome structure, and these two special patterns were irradiated and cross-linked by a DMD chip. The cross-linking effect was evaluated by optical coherence tomography (OCT), corneal topography and corneal biaxial tensile tests. The experimental rabbits were divided into four groups: group A, cross-linking of the bird's nest structure; group B, cross-linking of the honeycomb structure; group C, cross-linking of the traditional spot structure; and group D, normal (without modeling and cross-linking). RESULT: Following collagenase treatment, the collagen fiber structure of the rabbit cornea was destroyed, the central thickness of the cornea was reduced, the mechanical properties of the cornea were weakened, and no keratitis, ulcers or haze occurred. After the three cross-linking treatments, the morphology of the cornea improved, the density of the stromal layer increased, and the mechanical properties were enhanced. For the improvement of keratoconus mechanical properties, the average relative difference (Δ) of the four outcome measures was 61.98% for bird's nest cross-linking versus keratoconus (Wilcoxon rank sum test, P = 0.024), 16.13% for honeycomb cross-linking versus keratoconus (Wilcoxon rank sum test, P = 0.025), and 21.07% for traditional spot cross-linking versus keratoconus (Wilcoxon rank sum test, P = 0.014). All these differences are statistically significant. CONCLUSION: All three methods of cross-linking can improve the morphology and tissue structure of keratoconus and significantly improve the biomechanical properties of the cornea. Among them, the corneal cross-linking of the bird's nest structure attains the best biomechanical properties, followed by the corneal cross-linking of the traditional spot structure and of the honeycomb structure. This suggests that similar or better cross-linking effects can be achieved by designing custom structures with less UV exposure. This provides a direction for future research on better and more accurate pattern cross-linking treatments.


Assuntos
Reagentes de Ligações Cruzadas , Ceratocone/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Riboflavina/uso terapêutico , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Colagenases/farmacologia , Córnea/diagnóstico por imagem , Córnea/efeitos dos fármacos , Córnea/metabolismo , Córnea/fisiopatologia , Módulo de Elasticidade/fisiologia , Ceratocone/diagnóstico por imagem , Ceratocone/metabolismo , Ceratocone/fisiopatologia , Coelhos , Tomografia de Coerência Óptica , Raios Ultravioleta
20.
PLoS Biol ; 16(5): e2004225, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750781

RESUMO

p38 has long been known as a central mediator of protein kinase A (PKA) signaling in brown adipocytes, which positively regulate the transcription of uncoupling protein 1 (UCP-1). However, the physiological role of p38 in adipose tissues, especially the white adipose tissue (WAT), is largely unknown. Here, we show that mice lacking p38α in adipose tissues display a lean phenotype, improved metabolism, and resistance to diet-induced obesity. Surprisingly, ablation of p38α causes minimal effects on brown adipose tissue (BAT) in adult mice, as evident from undetectable changes in UCP-1 expression, mitochondrial function, body temperature (BT), and energy expenditure. In contrast, genetic ablation of p38α in adipose tissues not only markedly facilitates the browning in WAT upon cold stress but also prevents diet-induced obesity. Consistently, pharmaceutical inhibition of p38α remarkably enhances the browning of WAT and has metabolic benefits. Furthermore, our data suggest that p38α deficiency promotes white-to-beige adipocyte reprogramming in a cell-autonomous manner. Mechanistically, inhibition of p38α stimulates the UCP-1 transcription through PKA and its downstream cAMP-response element binding protein (CREB), which form a positive feedback loop that functions to reinforce the white-to-beige phenotypic switch during cold exposure. Together, our study reveals that inhibition of p38α is able to promote WAT browning and confer metabolic benefits. Our study also indicates that p38α in WAT represents an exciting pharmacological target to combat obesity and metabolic diseases.


Assuntos
Tecido Adiposo/metabolismo , Imidazóis/uso terapêutico , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Obesidade/metabolismo , Piridinas/uso terapêutico , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Reprogramação Celular , Temperatura Baixa , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica , Avaliação Pré-Clínica de Medicamentos , Imidazóis/farmacologia , Camundongos , Camundongos Knockout , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/genética , Obesidade/prevenção & controle , Fenótipo , Piridinas/farmacologia , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA