Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Otolaryngol ; 43(3): 103430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35398741

RESUMO

OBJECTIVE: To analyze the audiological characteristics and surgical results in patients undergoing surgery for simple congenital ossicular chain malformation, and the effect of endoscopic surgery. METHODS: A retrospective review was performed on 86 patients who underwent surgery for the congenital malformation of the ossicular chain. Clinical characteristics and audiometric data were analyzed. Fifty-eight patients had detailed postoperative data, and the preoperative and postoperative audiometric results were compared. The subjects were further divided into endoscopic and microscopic groups, and their surgical effects were examined. RESULTS: The preoperative audiometry results in the low-frequency group were worse than those in the high-frequency group (P < 0.05). A postoperative air-bone gap closure to 20 dB or less was achieved in 73.33% of the 60 ears of patients postoperatively. The postoperative air conduction and air-bone gap were significantly better than the preoperative ones (P < 0.05), and the improvement effect was the best in class III patients (P < 0.05). Postoperative hearing had no significant differences between the endoscopic and microscopic groups. However, endoscopic surgery also was more advantageous in terms of operating time (P < 0.05). CONCLUSIONS: Preoperative pure tone audiometric results showed moderate or moderate-severe hearing loss, especially in the low-frequency area. The reconstruction of the auditory ossicle chain can achieve satisfactory results, especially in class III patients. Endoscopic and microscopic surgery in the treatment of simple congenital ossicular chain malformations can effectively improve postoperative hearing.


Assuntos
Ossículos da Orelha , Prótese Ossicular , Audiometria de Tons Puros , Ossículos da Orelha/cirurgia , Endoscopia/métodos , Audição , Humanos , Estudos Retrospectivos , Resultado do Tratamento
2.
Inorg Chem ; 58(3): 2122-2132, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30672708

RESUMO

With the expansion and deepening of scientific research, dual-functional or multifunctional materials are urgently needed to replace those for single application. Herein, a fluorescence sensing system based on an In(III)-organic complex with in situ Lewis acid sites has been constructed, exhibiting high sensitivity for the detection of Fe(III) ions with a low detection limit of 3.95 µM and a short response time of within 10 s. It is noteworthy that the quenched fluorescence of the Fe(III)-incorporated sample could be reopened linearly with an increase of alkalinity, followed by the reactivation of its functionality to identify Fe(III) ions, forming an alternate detection cycle for Fe(III) and pH with off-on-off fluorescent switch characteristics. Considering its unique molecular recognition capability, an advanced three-input (Fe(III), EDTA, and OH-) and two-output (B440 and G489) Boolean logic operation comprising BUFF, NOT, OR, and AND logic gates was integrated, possessing potential applications in intelligent multianalyte sensing systems.

3.
J Hazard Mater ; 470: 134194, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583196

RESUMO

The escalating prevalence of nanoplastics contamination in environmental ecosystems has emerged as a significant health hazard. Conventional analytical methods are suboptimal, hindered by their inefficiency in analyzing nanoplastics at low concentrations and their time-intensive processes. In this context, we have developed an innovative approach that employs luminescent metal-phenolic networks (L-MPNs) coupled with surface-enhanced Raman spectroscopy (SERS) to separate and label nanoplastics, enabling rapid, sensitive and quantitative detection. Our strategy utilizes L-MPNs composed of zirconium ions, tannic acid, and rhodamine B to uniformly label nanoplastics across a spectrum of sizes (50-500 nm) and types (e.g., polystyrene, polymethyl methacrylate, polylactic acid). Rhodamine B (RhB) functions as a Raman reporter within these L-MPNs-based SERS tags, providing the requisite sensitivity for trace measurement of nanoplastics. Moreover, the labeling with L-MPNs aids in the efficient separation of nanoplastics from liquid media. Utilizing a portable Raman instrument, our methodology offers cost-effective, swift, and field-deployable detection capabilities, with excellent sensitivity in nanoplastic analysis and a detection threshold as low as 0.1 µg/mL. Overall, this study proposes a highly promising strategy for the robust and sensitive analysis of a broad spectrum of particle analytes, underscored by the effective labeling performance of L-MPNs when coupled with SERS techniques.

4.
Int J Biol Macromol ; 270(Pt 2): 132220, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754654

RESUMO

Developing an edible and active coating, incorporating environmentally-friendly antimicrobial agents into edible polymers, provides an eco-friendly alternative to conventional packaging and exhibits significant potential in preserving the quality of postharvest food. Herein, we aim to develop a novel edible and active coating based on xanthan gum (XG) nanoemulsion (NE) incorporating betel leaf extract (BLE) for the preservation of fresh produce. The total phenolic content, total flavonoid content, and antioxidant capacity of the methanol extract of BLE at various concentrations were characterized. Further development of the active coating at different formulations of Tween 80 (1 % and 3 % w/v), XG (0.1 % to 0.5 % w/v), and BLE (1 % to 5 % w/v) was characterized by physical stability, viscosity, and antimicrobial properties. Results showed that the active coating at 1 % BLE showed significant antimicrobial properties against diverse bacterial and fungal foodborne pathogens (e.g., B. cereus, S. aureus) and fungal cultures (e.g., C. albicans). The study also examined the shelf-life of tomatoes coated with the BLE-XG NE solution, stored at 4 °C for 27 days. Analyses of weight retention, soluble solids, pH, texture, sensory attributes, and microbial populations showed that the coating effectively preserved tomato quality, highlighting its potential to preserve fresh produce and enhance food security.


Assuntos
Emulsões , Conservação de Alimentos , Extratos Vegetais , Folhas de Planta , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Folhas de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Conservação de Alimentos/métodos , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Viscosidade , Solanum lycopersicum/química , Testes de Sensibilidade Microbiana
5.
Nat Commun ; 14(1): 6868, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891162

RESUMO

The folding/misfolding and pharmacological rescue of multidomain ATP-binding cassette (ABC) C-subfamily transporters, essential for organismal health, remain incompletely understood. The ABCC transporters core consists of two nucleotide binding domains (NBD1,2) and transmembrane domains (TMD1,2). Using molecular dynamic simulations, biochemical and hydrogen deuterium exchange approaches, we show that the mutational uncoupling or stabilization of NBD1-TMD1/2 interfaces can compromise or facilitate the CFTR(ABCC7)-, MRP1(ABCC1)-, and ABCC6-transporters posttranslational coupled domain-folding in the endoplasmic reticulum. Allosteric or orthosteric binding of VX-809 and/or VX-445 folding correctors to TMD1/2 can rescue kinetically trapped CFTR posttranslational folding intermediates of cystic fibrosis (CF) mutants of NBD1 or TMD1 by global rewiring inter-domain allosteric-networks. We propose that dynamic allosteric domain-domain communications not only regulate ABCC-transporters function but are indispensable to tune the folding landscape of their posttranslational intermediates. These allosteric networks can be compromised by CF-mutations, and reinstated by correctors, offering a framework for mechanistic understanding of ABCC-transporters (mis)folding.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dobramento de Proteína , Fibrose Cística/genética , Mutação , Retículo Endoplasmático/metabolismo
6.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37905074

RESUMO

The folding/misfolding and pharmacological rescue of multidomain ATP-binding cassette (ABC) C-subfamily transporters, essential for organismal health, remain incompletely understood. The ABCC transporters core consists of two nucleotide binding domains (NBD1,2) and transmembrane domains (TMD1,2). Using molecular dynamic simulations, biochemical and hydrogen deuterium exchange approaches, we show that the mutational uncoupling or stabilization of NBD1-TMD1/2 interfaces can compromise or facilitate the CFTR(ABCC7)-, MRP1(ABCC1)-, and ABCC6-transporters posttranslational coupled domain-folding in the endoplasmic reticulum. Allosteric or orthosteric binding of VX-809 and/or VX-445 folding correctors to TMD1/2 can rescue kinetically trapped CFTR post-translational folding intermediates of cystic fibrosis (CF) mutants of NBD1 or TMD1 by global rewiring inter-domain allosteric-networks. We propose that dynamic allosteric domain-domain communications not only regulate ABCC-transporters function but are indispensable to tune the folding landscape of their post-translational intermediates. These allosteric networks can be compromised by CF-mutations, and reinstated by correctors, offering a framework for mechanistic understanding of ABCC-transporters (mis)folding. One-Sentence Summary: Allosteric interdomain communication and its modulation are critical determinants of ABCC-transporters post-translational conformational biogenesis, misfolding, and pharmacological rescue.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36498279

RESUMO

To apply coal fly ash to the remediation of heavy-metal-contaminated soil, an alumina-silica nano-amendment (ASNA) was synthesized from coal fly ash and was used for the immobilization of lead and zinc in contaminated soil. The investigation on the synthesis of the ASNA shows that the ASNA can be obtained under a roasting temperature of 700 °C, a ratio of alkali to coal fly ash of 1.2:1, and a molar ratio of silicon to aluminum of 1:1. The ASNA could increase the soil pH and cation exchange capacity (CEC) and decrease the bioavailability of Pb and Zn. When the ASNA addition increased from 0 to 2%, the bioavailability (extracted by CaCl2) of Pb and Zn decreased by 47% and 72%, respectively. Moreover, the addition of the ASNA facilitated the transformation of Pb from a reducible fraction to oxidizable and residual fractions and Zn from an exchangeable fraction to a residual fraction. The correlation analysis and cluster analysis verify that the ASNA modulates the chemical speciation of heavy metals by increasing the soil's CEC and pH, thereby immobilizing heavy metals. It is expected that this study can provide a new method for the remediation of Pb- and Zn-contaminated soil.


Assuntos
Metais Pesados , Poluentes do Solo , Cinza de Carvão/análise , Carvão Mineral/análise , Poluentes do Solo/análise , Óxido de Alumínio , Dióxido de Silício , Metais Pesados/análise , Solo , Zinco/análise
8.
Foods ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34574098

RESUMO

Sodium alginate (SA)-pectin (PEC)-whey protein isolate (WPI) complexes were used as an emulsifier to prepare ß-carotene emulsions, and the encapsulation efficiency for ß-carotene was up to 93.08%. The confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) images showed that the SA-PEC-WPI emulsion had a compact network structure. The SA-PEC-WPI emulsion exhibited shear-thinning behavior and was in a semi-dilute or weak network state. The SA-PEC-WPI stabilized ß-carotene emulsion had better thermal, physical and chemical stability. A small amount of ß-carotene (19.46 ± 1.33%) was released from SA-PEC-WPI stabilized ß-carotene emulsion in simulated gastric digestion, while a large amount of ß-carotene (90.33 ± 1.58%) was released in simulated intestinal digestion. Fourier transform infrared (FTIR) experiments indicated that the formation of SA-PEC-WPI stabilized ß-carotene emulsion was attributed to the electrostatic and hydrogen bonding interactions between WPI and SA or PEC, and the hydrophobic interactions between ß-carotene and WPI. These results can facilitate the design of polysaccharide-protein stabilized emulsions with high encapsulation efficiency and stability for nutraceutical delivery in food and supplement products.

9.
Front Oncol ; 11: 720418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692495

RESUMO

OBJECTIVE: To assess the efficacy of treatment outcomes of salvage surgery for recurrent nasopharyngeal carcinoma (rNPC). METHODS: We conducted a detailed search of the literatures in biomedical databases published from January 1990 to December 2020. The main research features and results of interest were retrieved from the articles that met the selection criteria for meta-analysis. RESULTS: A total of 21 articles with 778 patients were included, 17 of which met the meta-analysis inclusion criteria. The pooled 2-year overall survival (OS), 5-year OS, and 2-year disease-free survival (DFS) were 71%, 50% and 61%, respectively. Subgroup analysis was conducted with postoperative adjuvant therapy. The pooled 2-year OS, 5-year OS and 2-year DFS of the postoperative adjuvant therapy group compared with the surgery alone group were 69% vs 72%, 44% vs 56%, and 77% vs 54%, respectively. Univariate and multivariate analyses were performed on 178 patients with detailed individual postoperative survival data in 10 articles. On multivariate analysis, recurrent T (RT) stage and adjuvant therapy were independent predictors of outcomes. CONCLUSIONS: This meta-analysis indicated that recurrent NPC patients can obtain survival benefits from salvage surgery. Accurately assessing the RT stage of the tumor and choosing the appropriate surgical method are important to the success of the surgery. Although the prognostic factors influencing outcome have been studied, conclusive data on the survival benefits are still lacking. Random controlled trials (RCTs) to compare surgery alone and postoperative adjuvant therapy are needed in patients with positive margin status after salvage surgery.

10.
ACS Appl Mater Interfaces ; 9(34): 28939-28948, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28776972

RESUMO

Drug delivery in target regions could make extraordinary progress in chemoselective therapies. A novel preferred coordination (PC) strategy referring to proactive interacting with open active sites to replace previous occupation by ion-exchange for controlling release of drug molecules is well-constructed. Two topological types of MOF-In1 (Schläfli symbol: (4,8)-connected of (410·615·83)(45·6)2) and MOF-In2 (Schläfli symbol: (4,4)-connected of (66)) show the specific way. Increasing node connectivity as well as the trapping of guest OH- anions, 5-fluorouracil (5-FU) is preferentially captured into the MOF-In1, which exhibits an outstanding loading capacity around 34.32 wt %. 19F NMR spectroscopy was further employed to investigate host-guest interaction and reveal the binding constant (Ka = 3.84 × 102 M-1). Meanwhile, the controlled release of 5-FU in a simulated human body with liquid phosphate-buffered saline solution by biofriendly Zn2+-triggered is realized. With an elevated Zn2+ concentration, the drug release will be enhanced. This efficient strategy for MOFs as multifunctional drug carrier opens a new avenue for biological and medical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA