Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Small ; 19(23): e2208288, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36876441

RESUMO

In this work, it is reported that large-area (centimeter-scale) arrays of non-close-packed polystyrene-tethered gold nanorod (AuNR@PS) can be prepared through a liquid-liquid interfacial assembly method. Most importantly, the orientation of AuNRs in the arrays can be controlled by changing the intensity and direction of electric field applied in the solvent annealing process. The interparticle distance of AuNR can be tuned by varying the length of polymer ligands. Moreover, the AuNR@PS with short PS ligand are favorited to form orientated arrays with the assistance of electric field, while long PS ligands make the orientation of AuNRs difficult. The orientated AuNR@PS arrays are employed as the nano-floating gate of field-effect transistor memory device. Tunable charge trapping and retention characteristics in the device can be realized by electrical pulse with visible light illumination. The memory device with orientated AuNR@PS array required less illumination time (1 s) at the same onset voltage in programming operation, compared to the control device with disordered AuNR@PS array (illumination time: 3 s). Moreover, the orientated AuNR@PS array-based memory device can maintain the stored data for more than 9000 s, and exhibits stable endurance characteristic without significant degradation in 50 programming/reading/erasing/reading cycles.

2.
Small ; 19(11): e2207468, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36564364

RESUMO

In situ fabrication of macroscale ordered monolayers of nanoparticles (NPs) on targeted substrates is highly desirable for precision electronic and optical devices, while it remains a great challenge. In this study, a solution is provided to address this challenge by developing a colloidal ink formulation and employing the direct-ink-writing (DIW) technique, where on-demand delivery of ink at a targeted location and directional evaporation with controllable rate are leveraged to precisely guide the deposition of polystyrene-grafted gold NPs (Au@PS NPs) into a macroscale monolayer with an ordered Au NP array embedded in a PS thin film. A 2D steady-state diffusion-controlled evaporation model, which explains the parameter dependence of the experimental results and gives semiquantitative agreement with the experimental evaporation kinetics is proposed. The ordered monolayer is used as both nanocrystal floating gates and the tunneling layer for nonvolatile memory devices. It shows significantly enhanced performance compared with a disordered NP film prepared by spin coating. This approach allows for fine control of NP self-assembly to print macroscaleordered monolayers directly onto substrates, which has great promise for application in broad fields, including microelectronic and photoelectronic devices, sensors, and functional coatings.

3.
Sensors (Basel) ; 23(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177625

RESUMO

Cutting force in lathe work is closely related to tool wear and affects the turning quality. Direct measurement of the cutting force by measuring the strain of the tool holder is challenging because the tool holder design aims to be highly rigid in order to undertake large cutting forces. Accordingly, the most popular dynamometer designs modify the standard tool holder by decreasing the structural rigidity of the holder, which reduces the machining precision and is not widely accepted. In order to solve the issue of the low stiffness of the dynamometer reducing the machining precision, in this paper, the ultra-low strain on the tool holder was successfully detected by the highly sensitive semiconductor strain gauges (SCSG) adjacent to the blade cutting insert. However, the cutting process would generate much heat, which increases the force measuring area temperature of the tool holder by about 30 °C. As a result, the readout drifted significantly with the temperature changes due to the high temperature coefficient of SCSG. To solve this problem, the temperature on the tool holder was monitored and a BP neural network was proposed to compensate for temperature drift errors. Our methods improved the sensitivity (1.14 × 10-2 mV/N) and the average relative error of the BP neural network prediction (≤1.48%) while maintaining the original stiffness of the tool holder. The smart tool holder developed possesses high natural frequency (≥6 kHz), it is very suitable for dynamic cutting-force measurement. The cutting experiment data in the lathe work show comparable performance with the traditional dynamometers and the resolution of the smart tool holder is 2 N (0.25% of total range).

4.
Angew Chem Int Ed Engl ; 60(47): 24894-24900, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34545993

RESUMO

Herein, we report a feasible molecular design of the binuclear clusters featuring the n-p-n heterojunction of biligand-sandwiched inorganic units, which can be used as the effective charge trapper in ambipolar transistor memories with the large memory windows and the energy-saving operation. We found that the hole confinement on the p-type inorganic units is enhanced by spatial electronic anisotropy provided by the peripheral n-type organic phosphine ligands. The steric hindrance of the coordination sites, the insulating effect of the carbon-phosphorous single bonds and the parallel dual-ligand coordination mode jointly elongate the interunit distances to nanometer scale and restrain the intramolecular electronic communications, leading to the tunable and reliable charge trapping. Our results show that the spatial effect is crucial to further amplifying the electronic differences between organic and inorganic units for function enhancement.

5.
Small ; 14(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165914

RESUMO

In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG3 ) is reported. The WG3 NSs are prepared from phase separation by spin-coating blend solutions of WG3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG3 film, the device based on WG3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>104 s), and reliable switching properties. A quantitative study of the WG3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials.

6.
Small ; 14(25): e1800756, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29806210

RESUMO

Here, charge-storage nonvolatile organic field-effect transistor (OFET) memory devices based on interfacial self-assembled molecules are proposed. The functional molecules contain various aromatic amino moieties (N-phenyl-N-pyridyl amino- (PyPN), N-phenyl amino- (PN), and N,N-diphenyl amino- (DPN)) which are linked by a propyl chain to a triethoxysilyl anchor group and act as the interface modifiers and the charge-storage elements. The PyPN-containing pentacene-based memory device (denoted as PyPN device) presents the memory window of 48.43 V, while PN and DPN devices show the memory windows of 24.88 and 8.34 V, respectively. The memory characteristic of the PyPN device can remain stable along with 150 continuous write-read-erase-read cycles. The morphology analysis confirms that three interfacial layers show aggregation due to the N atomic self-catalysis and hydrogen bonding effects. The large aggregate-covered PyPN layer has the full contact area with the pentacene molecules, leading to the high memory performance. In addition, the energy level matching between PyPN molecules and pentacene creates the smallest tunneling barrier and facilitates the injection of the hole carriers from pentacene to the PyPN layer. The experimental memory characteristics are well in agreement with the computational calculation.

7.
Phys Chem Chem Phys ; 18(14): 9412-8, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26979556

RESUMO

The charge trapping properties of the blend of polystyrene (PS) and a sterically hindered organic semiconductor SFDBAO (spiro[fluorene-9,7-dibenzo[c,h]acridin-5-one]) are investigated by electrostatic and Kelvin probe force microscopy (EFM and KPFM). EFM signals of trapped charge spots injected with controllable tip biases, which are recorded with different dissipation times t, the percent of SFDBAO in blends, and the scanning tip bias, have been measured. By the quantitative analysis, the excellent trapped charge density of PS/SFDBAO blend films for the holes (∼×10(-5) C m(-2)) is much higher than that of the SFDBAO film (∼×10(-6) C m(-2)) and the PS film (∼×10(-7) C m(-2)). However, the trapped charge density of electrons (∼×10(-7) C m(-2)) has the same order magnitude for SFDBAO, PS and the blend films. The results indicate that the blend of PS and SFDBAO enhances the high-density storage and retention abilities of the holes to a larger extent, but the endurance improvement of the electrons is not that obvious. By the KPFM measurement, we further verify the different diffusion rates of the trapped holes and electrons in the PS/SFDBAO blend films, and discuss the possible physical mechanism. The qualitative and quantitative determination of charge trapping properties in this work can be very useful for the characterization of PS/SFDBAO based charge trapping memory devices.

8.
Opt Lett ; 40(13): 3217-20, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26125406

RESUMO

We present an ultra-compact spectrometer that uses a 10×10 hole array as the dispersive component. Our analysis shows that the two-dimensional intensity distribution can be modeled by a system of simultaneous linear equations when the size of each hole in the dispersive component has been pre-designed appropriately. One can readily recover the spectral contents of the input radiation by solving the linear equation system with regularized procedure. Experimental results show that the reconstruction range is at least within the entire visible band, which can be further extended if a near-infrared CCD is used. One therefore envisions strong potential for many wavelength analysis applications.


Assuntos
Fenômenos Ópticos , Análise Espectral/instrumentação , Calibragem
9.
Phys Chem Chem Phys ; 17(7): 4919-25, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25559269

RESUMO

Defect engineering and the non-covalent interaction strategy allow for dramatically tuning the optoelectronic features of graphene. Herein, we theoretically investigated the intrinsic mechanism of non-covalent interactions between pentagon-octagon-pentagon (5-8-5) defect graphene (DG) and absorbed molecules, tetrathiafulvalene (TTF), perfluoronaphthalene (FNa), tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), through geometry, distance, interaction energy, Mulliken charge distribution, terahertz frequency vibration, visualization of the interactions, charge density difference, electronic transition behaviour, band structure and density of state. All the calculations were performed using density functional theory including a dispersion correction (DFT-D). The calculated results indicate that the cyano- (CN) group (electron withdraw group) in TCNQ and F4TCNQ, rather than the F group, gain the electron from DG effectively and exhibit much stronger interactions via wavefunction overlap with DG, leading to a short non-covalent interaction distance, a large interaction energy and a red-shift of out-of-plane terahertz frequency vibration, changing the bands near the Fermi level and enhancing the infrared (IR) light absorption significantly. The enhancement of such IR absorbance offering a broader absorption (from 300 to 1200 nm) will benefit light harvesting in potential applications of solar energy conversion.

10.
Nanotechnology ; 25(18): 185202, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24739543

RESUMO

We reported resistive switching behaviors in the resistive random access memory (RRAM) devices based on the different annealing temperatures of graphene oxide (GO) film as active layers. It was found that the resistive switching characteristics of an indium tin oxide (ITO)/GO/Ag structure have a strong dependence on the annealing temperature of GO film. When the annealing temperature of the GO film was 20 °C, the devices showed typical write-once-read-many-times (WORM) type memory behaviors, which have good memory performance with a higher ON/OFF current ratio (∼10(4)), the higher the high resistance state (HRS)/low resistance state (LRS) ratio (∼10(5)) and stable retention characteristics (>10(3) s) under lower programming voltage (-1 V and -0.5 V). With the increasing annealing temperature of GO film, the resistive switching behavior of RRAM devices gradually weakened and eventually disappeared. This phenomenon could be understood by the different energy level distributions of the charge traps in GO film, and the different charge injection ability from the Ag electrode to GO film, which is caused by the different annealing temperatures of the GO film.


Assuntos
Dispositivos de Armazenamento em Computador , Eletrônica/instrumentação , Grafite/química , Eletricidade , Desenho de Equipamento , Humanos , Microscopia de Força Atômica , Temperatura
11.
J Mol Graph Model ; 127: 108696, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38147710

RESUMO

To investigate the impact of interfacial layer effects on the thermal conductivity of nanofluids and the microscopic mechanisms of enhanced thermal conductivity, this study employed non-equilibrium molecular dynamics to compute the thermal conductivity, number density, radial distribution function, and mean square displacement distribution of SiC nanofluids. The impact of nanoparticle volume fraction and particle size parameters on the thermal conductivity of nanofluids and the structure of interfacial adsorption layers was discussed. The simulation calculation results show that the coefficient of thermal conductivity of nanofluid is positively related to the volume fraction of nanoparticles, increasing from 0.6529 W/(m·K) to 0.8159 W/(m·K), and the enhancement of thermal conductivity by the volume fraction can be up to 33.97 %. The thermal conductivity is inversely correlated with the change in particle size, and the maximum improvement in thermal conductivity by particle size can reach up to 12.05 %. The simulated results of the thermal conductivity of nanofluid are almost consistent with the predicted results of the Yu&Choi model, and the error is controlled within 5 %. Simultaneously, the thickness of the interfacial adsorption layer decreases with an increase in particle size. This reduction arises due to larger particles having a smaller specific surface area, resulting in fewer particle surfaces covered by the interface layer. Moreover, the impact of particle size on the arrangement and affinity of molecules within the interface layer contributes to this decrease. Overall, interface layer effects exhibit a dual impact on the thermal conduction of nanofluids. The structured formation and high-density distribution of the adsorption layer contribute to enhanced heat transfer, while thermal resistance between nanoparticle surfaces and the fluid restricts heat transmission.


Assuntos
Temperatura Alta , Simulação de Dinâmica Molecular , Condutividade Térmica , Adsorção , Água
12.
Adv Mater ; : e2403538, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39040000

RESUMO

Visuomorphic computing aims to simulate and potentially surpass the human retina by mimicking biological visual perception with an artificial retina. Despite significant progress, challenges persist in perceiving complex interactive environments. Negative photoconductivity transistors (NPTs) mimic synaptic behavior by achieving adjustable positive photoconductivity (PPC) and negative photoconductivity (NPC), simulating "excitation" and "inhibition" akin to sensory cell signals. In complex interactive environments, NPTs are desired for visuomorphic computing that can achieve a better sense of information, lower power consumption, and reduce hardware complexity. In this review, it is started by introducing the development process of NPTs, while placing a strong emphasis on the device structures, working mechanisms, and key performance parameters. The common material systems employed in NPTs based on their functions are then summarized. Moreover, it is proceeded to summarize the noteworthy applications of NPTs in optoelectronic devices, including advanced multibit nonvolatile memory, optoelectronic logic gates, optical encryption, and visual perception. Finally, the challenges and prospects that lie ahead in the ongoing development of NPTs are addressed, offering valuable insights into their applications in optoelectronics and a comprehensive understanding of their significance.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38600805

RESUMO

In the era of the Internet of Things and the rapid progress of artificial intelligence, there is a growing demand for advanced dynamic vision systems. Vision systems are no longer confined to static object detection and recognition, as the detection and recognition of moving objects are becoming increasingly important. To meet the requirements for more precise and efficient dynamic vision, the development of adaptive multimodal motion detection devices becomes imperative. Inspired by the varied response rates in biological vision, we introduce the concept of critical flicker fusion frequency (cFFF) and develop an organic optoelectronic synaptic transistor with adjustable cFFF. In situ Kelvin probe force microscopy analysis reveals that light signal recognition in this device originates from charge transfer in the poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)-benzo[1,2-c:4,5-c']dithiophene-4,8-dione)] (PBDB-T)/pentacene heterojunction, which can be effectively modulated by gate voltage. Building upon this, we implement different cFFF within a single device to facilitate the detection and recognition of objects moving at different speeds. This approach allows for resource allocation during dynamic detection, resulting in a reduction in power consumption. Our research holds great potential for enhancing the capabilities of dynamic visual systems.

14.
Adv Mater ; 36(32): e2404160, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815276

RESUMO

Photoadaptive synaptic devices enable in-sensor processing of complex illumination scenes, while second-order adaptive synaptic plasticity improves learning efficiency by modifying the learning rate in a given environment. The integration of above adaptations in one phototransistor device will provide opportunities for developing high-efficient machine vision system. Here, a dually adaptable organic heterojunction transistor as a working unit in the system, which facilitates precise contrast enhancement and improves convergence rate under harsh lighting conditions, is reported. The photoadaptive threshold sliding originates from the bidirectional photoconductivity caused by the light intensity-dependent photogating effect. Metaplasticity is successfully implemented owing to the combination of ambipolar behavior and charge trapping effect. By utilizing the transistor array in a machine vision system, the details and edges can be highlighted in the 0.4% low-contrast images, and a high recognition accuracy of 93.8% with a significantly promoted convergence rate by about 5 times are also achieved. These results open a strategy to fully implement metaplasticity in optoelectronic devices and suggest their vision processing applications in complex lighting scenes.

15.
J Colloid Interface Sci ; 668: 232-242, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677212

RESUMO

Inkjet printing is of great interest in the preparation of optoelectronic and microelectronic devices due to its low cost, low process temperature, versatile material compatibility, and ability to precisely manufacture multi-layer devices on demand. However, interlayer solvent erosion is a typical problem that limits the printing of organic semiconductor devices with multi-layer structures. In this study, we proposed a solution to address this erosion problem by designing polystyrene-block-poly(4-vinyl pyridine)-grafted Au nanoparticles (Au@PS-b-P4VP NPs). With a colloidal ink containing the Au@PS-b-P4VP NPs, we obtained a uniform monolayer of Au nano-crystal floating gates (NCFGs) embedded in the PS-b-P4VP tunneling dielectric (TD) layer using direct-ink-writing (DIW). Significantly, PS-b-P4VP has high erosion resistance against the semiconductor ink solvent, which enables multi-layer printing. An active layer of semiconductor crystals with high crystallinity and well-orientation was obtained by DIW. Moreover, we developed a strategy to improve the quality of the TD/semiconductor interface by introducing a polystyrene intermediate layer. We show that the NCFG memory devices exhibit a low threshold voltage (<3 V), large memory window (66 V), stable endurance (>100 cycles), and long-term retention (>10 years). This study provides universal guidance for printing functional coatings and multi-layer devices.

16.
Phys Chem Chem Phys ; 15(30): 12694-701, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23793112

RESUMO

The specific π-π interactions between curved and planar structures, which are different from the general π-π interactions between planar arenes, have generated great attention due to their brand-new, unique, and fascinating photoelectric properties. Herein, the curved-planar (C-P) π-π interactions between corannulene, pyrene and coronene have been investigated using the DFT-D method. A series of structural and physical properties have been calculated including geometry, C-C distance, binding energy, population charge distribution, dipole moment, electrostatic potential (ESP), visualization of the interactions in real space, transfer integral, electronic transition behaviour and Raman shift. All the analyses indicate that the bowl-planar (C(B)-P) complexes are distinguishable from the mouth-tip-planar (C(M)-P) and planar-planar (P-P) packing motifs due to their coherent negative ESP, electronic attraction strength and Raman spectra. The C-P complexes are found to exhibit dominant electron transport characteristics. In addition, an unusual "negative Stokes shift" is found in the C-P π-π complexes, which is caused by state resonance. This provides a clue to help predict and explore the photoelectric properties of C-P π-π complexes. In particular, at the frequency of the out-of-plane CH bending vibration around 1400 cm(-1), the planar molecules in the C(B)-P complexes possess a smaller Raman peak shift than in the C(M)-P complexes, and vice versa for the curved molecules. This specific Raman shift can be utilized as characteristic signals to identify the C-P structures.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/química , Pirenos/química , Teoria Quântica , Compostos Policíclicos , Eletricidade Estática , Termodinâmica
17.
ACS Appl Mater Interfaces ; 15(10): 13380-13392, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36853974

RESUMO

As an attractive prototype for neuromorphic computing, the difficultly attained three-terminal platforms have specific advantages in implementing the brain-inspired functions. Also, in these devices, the most utilized mechanisms are confined to the electrical gate-controlled ionic migrations, which are sensitive to the device defects and stoichiometric ratio. The resultant memristive responses have fluctuant characteristics, which have adverse influences on the neural emulations. Herein, we designed a specific transistor platform with light-regulated ambipolar memory characteristics. Also, based on its gentle processes of charge trapping, we obtain the impressive memristive performances featured by smooth responses and long-term endurable characteristics. The optoelectronic samples were also fabricated on flexible substrates successfully. Interestingly, based on the optoelectronic signals of the flexible devices, we endow the desirable optical processes with the brain-inspired emulations. We can flexibly emulate the light-inspired learning-memory functions in a synapse and further devise the advanced synapse array. More importantly, through this versatile platform, we investigate the mutual regulation of excitation and inhibition and implement their sensitive-mode transformations and the homeostasis property, which is conducive to ensuring the stability of overall neural activity. Furthermore, our flexible optoelectronic platform achieves high classification accuracy when implemented in artificial neural network simulations. This work demonstrates the advantages of the optoelectronic platform in implementing the significant brain-inspired functions and provides an insight into the future integration of visible sensing in flexible optoelectronic transistor platforms.

18.
Micromachines (Basel) ; 14(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37374813

RESUMO

Ti1-xAlxN coating is formed by replacing some Ti atoms in TiN with Al atoms, and their properties are closely related to Al content (0 < x < 1). Recently, Ti1-xAlxN-coated tools have been widely used in the machining of Ti-6Al-4V alloy. In this paper, the hard-to-machine material Ti-6Al-4V alloy is used as the study material. Ti1-xAlxN-coated tools are used for milling experiments. The evolution of the wear form and the wear mechanism of Ti1-xAlxN-coated tools are studied, and the influence of Al content (x = 0.52, 0.62) and cutting speed on tool wear are analyzed. The results show that the wear on the rake face changes from the initial adhesion and micro-chipping to coating delamination and chipping. Wear on the flank face varies from the initial adhesion and grooves to boundary wear, build-up layer, and ablation. The main wear mechanisms of Ti1-xAlxN-coated tools are dominated by adhesion, diffusion, and oxidation wear. Ti0.48Al0.52N coating protects the tool well and extends its service life.

19.
J Mech Behav Biomed Mater ; 147: 106152, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776762

RESUMO

Aiming at the difficulty of traditional machining of Y2O3-ZrO2 (YSZ) inert ceramic materials, a different method using focused ion beam to selectively create nanoscale microscale structures on the surface of materials was proposed. The sputtering yield, surface damage, and the energy loss of YSZ materials was investigated using the SRIM software using the Monte Carlo method. It is shown that the sputtering yield increases with ion energy in the range 0-30 keV, reaching a maximum of 9.4 atoms/ion at 30 keV. At an ion beam voltage of 30 keV, the most severe damage to the material is 8 mm on the surface. At the same time, the main forms of energy loss in the treatment are phonon energy loss and ionization energy loss, of which phonon energy loss due to the recoil atoms is the largest. In addition, we continue to perform focused ion beam processing experiments on YSZ materials, combining previous MC modeling to optimize different operating conditions such as ion beam, voltage and processing mode. The optimized processing parameters are 30 keV and 2.5 nA. It is shown that the quality of the deep grooves gradually improves with decreasing ion beam current at the same ion beam voltage. However, an excessively small ion beam current leads to an excessively large depth of the deep grooves and lengthy processing times.

20.
Adv Mater ; 35(23): e2209728, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36972150

RESUMO

Neuromorphic electronics, being inspired by how the brain works, hold great promise to the successful implementation of smart artificial systems. Among several neuromorphic hardware issues, a robust device functionality under extreme temperature is of particular importance for practical applications. Given that the organic memristors for artificial synapse applications are demonstrated under room temperature, achieving a robust device performance at extremely low or high temperature is still utterly challenging. In this work, the temperature issue is addressed by tuning the functionality of the solution-based organic polymeric memristor. The optimized memristor demonstrates a reliable performance under both the cryogenic and high-temperature environments. The unencapsulated organic polymeric memristor shows a robust memristive response under test temperature ranging from 77 to 573 K. Utilizing X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectrometry (ToF-SIMS) depth profiling, the device working mechanism is unveiled by comparing the compositional profiles of the fresh and written organic polymeric memristors. A reversible ion migration induced by an applied voltage contributes to the characteristic switching behavior of the memristor. Herein, both the robust memristive response achieved at extreme temperatures and the verified device working mechanism will remarkably accelerate the development of memristors in neuromorphic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA