Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2405487, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092672

RESUMO

Practical utilization of zinc-iodine (Zn-I2) batteries is hindered by significant challenges, primarily stemming from the polyiodide shuttle effect on the cathode and dendrite growth on the anode. Herein, a feasible redox-active electrolyte has been introduced with tetraethylammonium iodide as an additive that simultaneously addresses the above mentioned challenges via polyiodide solidification on the cathode and the electrostatic shielding effect on the anode. The tetraethylammonium (TEA+) captures water-soluble polyiodide intermediates (I3 -, I5 -), forming a solid complex at the cathode, thereby suppressing capacity loss during charge/discharge. Furthermore, the TEA+ mitigates dendrite growth on the Zn anode via the electrostatic shielding effect, promoting uniform and compact Zn deposition at the anode. Consequently, the Zn||Zn symmetric cell demonstrates superior cycling stability during Zn plating/stripping over 4,200 h at 1 mA cm-2 and 1 mAh cm-2. The Zn||NiNC full-cell exhibits a stable capacity retention of 98.4% after 20 000 cycles (>5 months) with near-unity Coulombic efficiency at 1 A g-1. The study provides novel insights for establishing a new direction for low-cost, sustainable, and long-lifespan Zn-I2 batteries.

2.
Adv Mater ; 36(13): e2306602, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091378

RESUMO

Single-atom nanozymes (SAzymes) constitute a promising category of enzyme-mimicking materials with outstanding catalytic performance. The performance of SAzymes improves through modification of the coordination environments around the metal center. However, the catalytic turnover rates of SAzymes, which are key measures of the effectiveness of active site modifications, remain lower than those of natural enzymes, especially in peroxidase-reactions. Here, the first and second shell coordination tuning strategy that yields SAzymes with structures and activities analogous to those of natural enzymes is reported. The optimized SAzyme exhibits a turnover rate of 52.7 s-1 and a catalytic efficiency of 6.97 × 105 M-1 s-1. A computational study reveals that axial S-ligands induce an alternative reaction mechanism, and SO2- functional groups provide hydrogen bonds to reduce the activation energy. In addition, SAzyme shows superior anti-tumor ability in vitro and in vivo. These results demonstrate the validity of coordination engineering strategies and the carcinostatic potential of SAzymes.


Assuntos
Carbono , Ferro , Ferro/química , Carbono/química , Catálise
3.
Adv Mater ; 36(4): e2308899, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37910632

RESUMO

The sluggish kinetics of the hydrogen oxidation reaction (HOR) in alkaline conditions continue to pose a significant challenge for the practical implementation of anion-exchange membrane fuel cells. Developing single-atom catalysts can accelerate the pace of new HOR catalyst discovery for highly cost-effective and active HOR performance. However, single-atom catalysts (SACs) for the alkaline HOR have rarely been reported, and fundamental studies on the rational design of SACs are still required. Herein, the design of Ru SAC supported on the tungsten carbide (Ru SA/WC1- x ) via in situ high-temperature annealing strategy is reported. The resulting Ru SA/WC1- x catalyst exhibits remarkably enhanced HOR performance in alkaline media, a level of activity that can not be achieved with carbon-supported Ru SAC. Electrochemical results and density functional theory demonstrate that promoting the hydroxyl adsorption on Ru SA/WC1- x interfaces, which is derived from the low potential of zero charge of WC1- x support, has a significant effect on enhancing the HOR performance of SACs. This enhancement leads to 5.8 and 60.1 times higher Ru mass activity of Ru SA/WC1- x than Ru nanoparticles on carbon and Ru single-atom on N-doped carbon, respectively. This work provides new insights into the design of highly active SACs for alkaline HOR.

4.
Adv Mater ; 35(46): e2302666, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37548180

RESUMO

Atomically dispersed and nitrogen coordinated iron catalysts (Fe-NCs) demonstrate potential as alternatives to platinum-group metal (PGM) catalysts in oxygen reduction reaction (ORR). However, in the context of practical proton exchange membrane fuel cell (PEMFC) applications, the membrane electrode assembly (MEA) performances of Fe-NCs remain unsatisfactory. Herein, improved MEA performance is achieved by tuning the local environment of the Fe-NC catalysts through defect engineering. Zeolitic imidazolate framework (ZIF)-derived nitrogen-doped carbon with additional CO2 activation is employed to construct atomically dispersed iron sites with a controlled defect number. The Fe-NC species with the optimal number of defect sites exhibit excellent ORR performance with a high half-wave potential of 0.83 V in 0.5 M H2 SO4 . Variation in the number of defects allows for fine-tuning of the reaction intermediate binding energies by changing the contribution of the Fe d-orbitals, thereby optimizing the ORR activity. The MEA based on a defect-engineered Fe-NC catalyst is found to exhibit a remarkable peak power density of 1.1 W cm-2 in an H2 /O2 fuel cell, and 0.67 W cm-2  in an H2 /air fuel cell, rendering it one of the most active atomically dispersed catalyst materials at the MEA level.

5.
ACS Appl Mater Interfaces ; 11(7): 7529-7538, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30672291

RESUMO

Morphological evolution accompanying a surface roughening and preferred orientation is an effective way to realize a high-performance gas sensor because of its significant potential as a chemical catalyst through chemical potentials and atomic energy states. In this work, we investigated a heterojunction of double-side-W-decorated NiO nanoigloos fabricated through radio frequency sputtering and a soft-template method. Interestingly, a morphological evolution characterized by a pyramidal rough surface and the preferred orientation of the (111) plane was observed upon decorating the bare NiO nanoigloos with W. The underlying mechanism of the morphological evolution was precisely demonstrated based on the van der Drift competitive growth model originating from the oxygen transport and chemical strain in the lattice. The gas sensing properties of W-decorated NiO show an excellent NO2 response and selectivity when compared to other gases. In addition, high response stability was evaluated under interference gas and humidity conditions. The synergistic effects on the sensing performance were interpreted on the basis of the morphological evolution of W-decorated NiO nanoigloos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA