RESUMO
BACKGROUND: Diatoms, which can accumulate large amounts of carotenoids, are a major group of microalgae and the dominant primary producer in marine environments. Phaeodactylum tricornutum, a model diatom species, acquires little silicon for its growth although silicon is known to contribute to gene regulation and play an important role in diatom intracellular metabolism. In this study, we explored the effects of artificial high-silicate medium (i.e. 3.0 mM sodium metasilicate) and LED illumination conditions on the growth rate and pigment accumulation in P. tricornutum, which is the only known species so far that can grow without silicate. It's well known that light-emitting diodes (LEDs) as novel illuminants are emerging to be superior monochromatic light sources for algal cultivation with defined and efficient red and blue lights. RESULTS: Firstly, we cultivated P. tricornutum in a synthetic medium supplemented with either 0.3 mM or 3.0 mM silicate. The morphology and size of diatom cells were examined: the proportion of the oval and triradiate cells decreased while the fusiform cells increased with more silicate addition in high-silicate medium; the average length of fusiform cells also slightly changed from 14.33 µm in 0.3 mM silicate medium to 12.20 µm in 3.0 mM silicate medium. Then we cultivated P. tricornutum under various intensities of red light in combination with the two different levels of silicate in the medium. Higher biomass productivity also achieved in 3.0 mM silicate medium than in 0.3 mM silicate medium under red LED light irradiation at 128 µmol/m2/s or higher light intensity. Increasing silicate reversed the down-regulation of fucoxanthin and chlorophyll a under high red-light illumination (i.e. 255 µmol/m2/s). When doubling the light intensity, fucoxanthin content decreased under red light but increased under combined red and blue (50:50) lights while chlorophyll a content reduced under both conditions. Fucoxanthin accumulation and biomass productivity increased with enhanced red and blue (50:50) lights. CONCLUSION: High-silicate medium and blue light increased biomass and fucoxanthin production in P. tricornutum under high light conditions and this strategy may be beneficial for large-scale production of fucoxanthin in diatoms.
Assuntos
Carotenoides/metabolismo , Diatomáceas/metabolismo , Luz , Silicatos/metabolismo , Carotenoides/química , Diatomáceas/química , Silicatos/químicaRESUMO
Diatoms are a major group of unicellular algae that are rich in lipids and carotenoids. However, sustained research efforts are needed to improve the strain performance for high product yields towards commercialization. In this study, we generated a number of mutants of the model diatom Phaeodactylum tricornutum, a cosmopolitan species that has also been found in Nordic region, using the chemical mutagens ethyl methanesulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (NTG). We found that both chlorophyll a and neutral lipids had a significant correlation with carotenoid content and these correlations were better during exponential growth than in the stationary growth phase. Then, we studied P. tricornutum common metabolic pathways and analyzed correlated enzymatic reactions between fucoxanthin synthesis and pigmentation or lipid metabolism through a genome-scale metabolic model. The integration of the computational results with liquid chromatography-mass spectrometry data revealed key compounds underlying the correlative metabolic pathways. Approximately 1000 strains were screened using fluorescence-based high-throughput method and five mutants selected had 33% or higher total carotenoids than the wild type, in which four strains remained stable in the long term and the top mutant exhibited an increase of 69.3% in fucoxanthin content compared to the wild type. The platform described in this study may be applied to the screening of other high performing diatom strains for industrial applications.
Assuntos
Organismos Aquáticos/genética , Carotenoides/biossíntese , Diatomáceas/genética , Redes e Vias Metabólicas/genética , Mutagênese/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Clorofila/biossíntese , Clorofila A , Cromatografia Líquida , Diatomáceas/metabolismo , Metanossulfonato de Etila/toxicidade , Fluorescência , Ensaios de Triagem em Larga Escala/métodos , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Metilnitronitrosoguanidina/toxicidadeRESUMO
Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.
Assuntos
Diatomáceas/metabolismo , Mutagênese/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Raios Ultravioleta , Biomassa , Carotenoides/metabolismo , Cromatografia Líquida/métodos , Diatomáceas/genética , Radiação Eletromagnética , Metabolismo dos Lipídeos/efeitos da radiação , Espectrometria de Massas/métodos , Mutação , Xantofilas/metabolismoRESUMO
BACKGROUND: The associations between sleep patterns or behaviors and the risk of cirrhosis and the influence of genetic susceptibility on these associations among NAFLD participants remain inadequately elucidated. METHODS: This study conducted a prospective follow-up of 112,196 NAFLD participants diagnosed at baseline from the UK Biobank cohort study. Five sleep behaviors were collected to measure a healthy sleep score. Five genetic variants were used to construct a polygenic risk score. We used Cox proportional hazard model to assess hazard ratios (HR) and 95% confidence intervals (CIs) for incidence of cirrhosis. RESULTS: During the follow-up, 592 incident cirrhosis cases were documented. Healthy sleep pattern was associated with reduced risk of cirrhosis in a dose-response manner (ptrend < 0.001). Participants with favourable sleep score (versus unfavourable sleep score) had an HR of 0.55 for cirrhosis risk (95% CI 0.39-0.78). Multivariable-adjusted HRs (95% CIs) of cirrhosis incidence for NAFLDs with no frequent insomnia, sleeping for 7-8 h per day, and no excessive daytime dozing behaviors were 0.73 (0.61-0.87), 0.79 (0.66-0.93), and 0.69 (0.50-0.95), respectively. Compared with participants with favourable sleep pattern and low genetic risk, those with unfavourable sleep pattern and high genetic risk had higher risks of cirrhosis incidence (HR 3.16, 95% CI 1.88-5.33). In addition, a significant interaction between chronotype and genetic risk was detected for the incidence of cirrhosis (p for multiplicative interaction = 0.004). CONCLUSION: An association was observed between healthy sleep pattern and decreased risk of cirrhosis among NAFLD participants, regardless of low or high genetic risk.
Assuntos
Predisposição Genética para Doença , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Sono , Humanos , Feminino , Masculino , Cirrose Hepática/genética , Cirrose Hepática/epidemiologia , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Estudos Prospectivos , Sono/genética , Sono/fisiologia , Incidência , Reino Unido/epidemiologia , Idoso , Fatores de Risco , Adulto , SeguimentosRESUMO
BACKGROUND: Omega-3 polyunsaturated fatty acids (n-3 PUFAs) confers anti-inflammatory efficacy, which has been suggested to be effective for patients with osteoarthritis (OA). However, previous studies evaluating the influence of n-3 PUFAs supplementation in patients with OA showed inconsistent results. We performed a systematic review and meta-analysis to comprehensively evaluate the influence of n-3 PUFAs on symptom and joint function of patients with OA. METHODS: Relevant randomized controlled trials (RCTs) were obtained by searching PubMed, Embase, and Cochrane Library databases. A random-effects model was employed to combine the results. RESULTS: Nine RCTs with 2070 patients with OA contributed to the meta-analysis. Pooled results showed that n-3 PUFAs supplementation could significantly relieve the arthritis pain as compared to placebo (standardized mean difference [SMD]: - 0.29, 95% confidence interval [CI] - 0.47 to - 0.11, p = 0.002, I2 = 60%). Besides, supplementation with n-3 PUFAs was also associated with improved joint function (SMD: - 0.21, 95% CI - 0.34 to - 0.07, p = 0.002, I2 = 27%). Subgroup analysis showed consistent results of studies with arthritis pain and joint function evaluated by the Western Ontario-McMaster University Osteoarthritis Index and other scales (p for subgroup difference = 0.33 and 0.34, respectively). No severe treatment-related adverse events (AEs) were observed in the included patients, and the incidence of overall AEs was similar between groups (odds ratio: 0.97, 95% CI 0.64-1.45, p = 0.86, I2 = 0%). CONCLUSIONS: Supplementation of n-3 PUFAs is effective to relieve pain and improve joint function in patients with OA.
Assuntos
Osteoartrite , Humanos , Bases de Dados Factuais , Osteoartrite/tratamento farmacológico , Dor , Ácidos Graxos Insaturados , Suplementos NutricionaisRESUMO
In order to produce natural pigments with competitive prices, algal strains employed in industrial production need to be improved for increasing the productivity of valuable metabolites, thereby reducing the overall production cost. Adaptive laboratory evolution (ALE) is a traditional method for strain improvement, which has been effectively utilized in bacteria and fungi. With the growing interest in algal biotechnology, attempts have recently been put forward to improve microalgal strains with ALE approach. This chapter describes a stepwise adaptive evolution strategy that enhances carotenoid yield from microalgae.
Assuntos
Adaptação Biológica , Evolução Biológica , Carotenoides/biossíntese , Microalgas/metabolismo , Biomassa , Cromatografia Líquida de Alta Pressão , Estresse FisiológicoRESUMO
Glucocorticoids (GCs) have been extensively used as the mainstream treatment for chronic inflammatory disorders. The persistent use of steroids in the past decades and the association with secondary infections warrants for detailed investigation into their effects on the innate immune system and the therapeutic outcome. In this study, we analyse the effect of GCs on antimicrobial polypeptide (AMP) expression. We hypothesize that GC related side effects, including secondary infections are a result of compromised innate immune responses. Here, we show that treatment with dexamethasone (Dex) inhibits basal mRNA expression of the following AMPs; human cathelicidin, human beta defensin 1, lysozyme and secretory leukocyte peptidase 1 in the THP-1 monocytic cell-line (THP-1 monocytes). Furthermore, pre-treatment with Dex inhibits vitamin D3 induced cathelicidin expression in THP-1 monocytes, primary monocytes and in the human bronchial epithelial cell line BCi NS 1.1. We also demonstrate that treatment with the glucocorticoid receptor (GR) inhibitor RU486 counteracts Dex mediated down-regulation of basal and vitamin D3 induced cathelicidin expression in THP-1 monocytes. Moreover, we confirmed the anti-inflammatory effect of Dex. Pre-treatment with Dex inhibits dsRNA mimic poly IC induction of the inflammatory chemokine IP10 (CXCL10) and cytokine IL1B mRNA expression in THP-1 monocytes. These results suggest that GCs inhibit innate immune responses, in addition to exerting beneficial anti-inflammatory effects.
Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Colecalciferol/farmacologia , Dexametasona/farmacologia , Células Epiteliais/efeitos dos fármacos , Glucocorticoides/farmacologia , Macrófagos/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/agonistas , Peptídeos Catiônicos Antimicrobianos/antagonistas & inibidores , Peptídeos Catiônicos Antimicrobianos/imunologia , Diferenciação Celular , Linhagem Celular , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Colecalciferol/antagonistas & inibidores , Células Epiteliais/citologia , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Mifepristona/farmacologia , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Muramidase/antagonistas & inibidores , Muramidase/genética , Muramidase/imunologia , Poli I-C/farmacologia , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Transdução de Sinais , beta-Defensinas/antagonistas & inibidores , beta-Defensinas/genética , beta-Defensinas/imunologia , CatelicidinasRESUMO
Antimicrobial peptides (AMPs) constitute an indispensable arm of innate immunity against infectious microbes in humans. Induction of endogenous AMPs may become an alternative therapy against infections. Our previous studies have demonstrated phenylbutyrate (PBA) as a novel inducer of the AMPs cathelicidin (encoded by the CAMP gene) and human beta-defensin-1 in the human bronchial epithelial cell line VA10. In this work, we have continued by studying molecular mechanisms of PBA mediated induction of LL-37 expression and associated pathways in the human bronchial epithelial cell line VA10. In this study we demonstrate vitamin D receptor (VDR) as a key transcription factor required for PBA mediated up-regulation of the CAMP gene expression. PBA also increases mRNA expression of the vitamin D3 regulated genes CYP24A1 and CD14. The siRNA knockdown of VDR reduced PBA mediated increase in CAMP, CYP24A1 and CD14 expression. Furthermore, we demonstrate that PBA enhances Toll-Like Receptor 5 ligand flagellin regulated mRNA expression of the inflammatory cytokine TNFα and chemokine CXCL8. PBA also up-regulates the expression of the genes encoding the growth factor cytokines transforming growth factor (TGF) α, TGFß1 and TGFß2. Our results indicate that TGFß type I receptor and epidermal growth factor receptor are involved in PBA mediated CAMP regulation. Finally, we show that co-treatment with PBA and vitamin D3 reduces Pseudomonas aeruginosa growth in vitro.