Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biochem ; 118(8): 2231-2240, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28067429

RESUMO

The Lnk adapter protein negatively regulates the signaling of thrombopoietin (TPO), the main megakaryocyte (MK) growth factor. Lnk-deficient (-/-) mice have increased TPO signaling and increased MK number. Interestingly, several mouse models exist in which increased MK number leads to a high bone mass phenotype. Here we report the bone phenotype of these mice. MicroCT and static histomorphometric analyses at 20 weeks showed the distal femur of Lnk-/- mice to have significantly higher bone volume fraction and trabecular number compared to wild-type (WT) mice. Notably, despite a significant increase in the number of osteoclasts (OC), and decreased bone formation rate in Lnk-/- mice compared to WT mice, Lnk-/- mice demonstrated a 2.5-fold greater BV/TV suggesting impaired OC function in vivo. Additionally, Lnk-/- mouse femurs exhibited non-significant increases in mid-shaft cross-sectional area, yet increased periosteal BFR compared to WT femurs was observed. Lnk-/- femurs also had non-significant increases in polar moment of inertia and decreased cortical bone area and thickness, resulting in reduced bone stiffness, modulus, and strength compared to WT femurs. Of note, Lnk is expressed by OC lineage cells and when Lnk-/- OC progenitors are cultured in the presence of TPO, significantly more OC are observed than in WT cultures. Lnk is also expressed in osteoblast (OB) cells and in vitro reduced alkaline phosphatase activity was observed in Lnk-/- cultures. These data suggest that both direct effects on OB and OC as well as indirect effects of MK in regulating OB contributes to the observed high bone mass. J. Cell. Biochem. 118: 2231-2240, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Trombopoetina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Células da Medula Óssea/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Feminino , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Megacariócitos/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Células RAW 264.7 , Trombopoetina/genética , Microtomografia por Raio-X
2.
Biomaterials ; 29(9): 1216-23, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18082254

RESUMO

Protein drugs have low bioavailability after oral administration, which is due in part to fast transit of the drugs or drug delivery vehicles through the gastrointestinal tract. Increasing the time that the drugs spend in the intestine after dosing would allow for greater absorption and increased bioavailability. We developed a formulation strategy that can be used to prolong intestinal retention of drug delivery vehicles without substantial alterations to current polymeric encapsulation strategies. A model drug, insulin, was encapsulated in negatively charged poly(lactic-co-glycolic acid) (PLGA) microparticles, and the microparticles were subsequently mixed with positively charged micromagnets, whose size will prevent them from being absorbed. Stable complexes formed through electrostatic interaction. The complexes were effectively immobilized in vitro in a model of the mouse small intestine by application of an external magnetic field. Mice that were gavaged with radio-labeled complexes and fitted with a magnetic belt retained 32.5% of the (125)I-insulin in the small intestine compared with 5.4% for the control group 6h after administration (p=0.005). Furthermore, mice similarly gavaged with complexes encapsulating insulin (120 Units/kg) exhibited long-term glucose reduction in the groups with magnetic belts. The corresponding bioavailability of insulin was 5.11% compared with 0.87% for the control group (p=0.007).


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Ácido Láctico , Magnetismo , Ácido Poliglicólico , Polímeros , Proteínas/administração & dosagem , Proteínas/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Insulina/administração & dosagem , Insulina/farmacocinética , Teste de Materiais , Camundongos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
3.
Pharm Res ; 23(3): 557-64, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16388405

RESUMO

PURPOSE: Protein drugs cannot be delivered efficiently through oral routes. To address this challenge, we evaluated the effect of prolonged gastrointestinal transit on the bioavailability of insulin carried by magnetically responsive microparticles in the presence of an external magnetic field. METHODS: Magnetite nanocrystals and insulin were coencapsulated into poly(lactide-co-glycolide) (PLGA) microparticles and their effects on hypoglycemia were evaluated in mice in the presence of a circumferentially applied external magnetic field. RESULTS: A single administration of 100 U/kg of insulin-magnetite-PLGA microparticles to fasted mice resulted in a reduction of blood glucose levels of up to 43.8% in the presence of an external magnetic field for 20 h (bioavailability = 2.77 +/- 0.46 and 0.87 +/- 0.29% based on glucose and ELISA assay, respectively), significantly higher than similarly dosed mice without a magnetic field (bioavailability = 0.66 +/- 0.56 and 0.30 +/- 0.06%, based on glucose and ELISA assay, respectively). CONCLUSIONS: A substantially improved hypoglycemic effect was observed in mice that were orally administered with insulin-magnetite-PLGA microparticles in the presence of an external magnetic field, suggesting that magnetic force can be used to improve the efficiency of orally delivered protein therapeutics.


Assuntos
Portadores de Fármacos/química , Óxido Ferroso-Férrico/química , Ácido Láctico/química , Ácido Poliglicólico/química , Polímeros/química , Proteínas/administração & dosagem , Administração Oral , Animais , Glicemia/metabolismo , Preparações de Ação Retardada , Portadores de Fármacos/administração & dosagem , Campos Eletromagnéticos , Trânsito Gastrointestinal , Hipoglicemia/sangue , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Insulina/administração & dosagem , Insulina/farmacocinética , Insulina/uso terapêutico , Absorção Intestinal , Camundongos , Camundongos Endogâmicos BALB C , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteínas/farmacocinética , Proteínas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA