Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(1): 245-261.e17, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649877

RESUMO

Genomic studies of lung adenocarcinoma (LUAD) have advanced our understanding of the disease's biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD remain poorly understood. We carried out a comprehensive proteomics analysis of 103 cases of LUAD in Chinese patients. Integrative analysis of proteome, phosphoproteome, transcriptome, and whole-exome sequencing data revealed cancer-associated characteristics, such as tumor-associated protein variants, distinct proteomics features, and clinical outcomes in patients at an early stage or with EGFR and TP53 mutations. Proteome-based stratification of LUAD revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Further, we nominated potential drug targets and validated the plasma protein level of HSP 90ß as a potential prognostic biomarker for LUAD in an independent cohort. Our integrative proteomics analysis enables a more comprehensive understanding of the molecular landscape of LUAD and offers an opportunity for more precise diagnosis and treatment.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Proteômica , Adenocarcinoma de Pulmão/genética , Povo Asiático/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Estadiamento de Neoplasias , Fosfoproteínas/metabolismo , Análise de Componente Principal , Prognóstico , Proteoma/metabolismo , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética
2.
Nature ; 567(7747): 257-261, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814741

RESUMO

Hepatocellular carcinoma is the third leading cause of deaths from cancer worldwide. Infection with the hepatitis B virus is one of the leading risk factors for developing hepatocellular carcinoma, particularly in East Asia1. Although surgical treatment may be effective in the early stages, the five-year overall rate of survival after developing this cancer is only 50-70%2. Here, using proteomic and phospho-proteomic profiling, we characterize 110 paired tumour and non-tumour tissues of clinical early-stage hepatocellular carcinoma related to hepatitis B virus infection. Our quantitative proteomic data highlight heterogeneity in early-stage hepatocellular carcinoma: we used this to stratify the cohort into the subtypes S-I, S-II and S-III, each of which has a different clinical outcome. S-III, which is characterized by disrupted cholesterol homeostasis, is associated with the lowest overall rate of survival and the greatest risk of a poor prognosis after first-line surgery. The knockdown of sterol O-acyltransferase 1 (SOAT1)-high expression of which is a signature specific to the S-III subtype-alters the distribution of cellular cholesterol, and effectively suppresses the proliferation and migration of hepatocellular carcinoma. Finally, on the basis of a patient-derived tumour xenograft mouse model of hepatocellular carcinoma, we found that treatment with avasimibe, an inhibitor of SOAT1, markedly reduced the size of tumours that had high levels of SOAT1 expression. The proteomic stratification of early-stage hepatocellular carcinoma presented in this study provides insight into the tumour biology of this cancer, and suggests opportunities for personalized therapies that target it.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Terapia de Alvo Molecular/tendências , Proteômica , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Processos de Crescimento Celular , Movimento Celular , Vírus da Hepatite B/patogenicidade , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estadiamento de Neoplasias , Prognóstico , Esterol O-Aciltransferase/genética
3.
Proteomics ; 24(1-2): e2300039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37654063

RESUMO

Organophosphorus compounds (OPs) such as chemical agents and pesticides are posing critical threats to civilians due to their irreversible phosphonylation of diverse amino acids residues forming different protein adducts. However, traditional analytical approaches are quite limited in capturing the myriad of post-translational events that affect protein functions, especially in identifying the low-abundance OP adducts. Herein a systematic proteomic strategy based on a typical click-enrich-release-identify bioorthogonal operation was firstly developed by employing an alkynyl-tagged V-type agent probe (AVP) and a biotin-based azido-enrichment linker (BTP-N3 ). AVP targeting peptides from human serum albumin (HSA) or plasma were captured by BTP-N3 via CuAAC click reaction, enriched by streptavidin beads, released by selective alkaline hydrolysis of phenacyl ester bond, and subsequently sequenced by LC-MS/MS. This strategy has helped identifying 1115 unique OP adduction sites on 163 proteins in human plasma, and covers lots of OP adducts that cannot be achieved by traditional detection methods. The comprehensive coverage of novel OP substrates provided a general and sensitive approach to retrospective verification and/or dose assessment of toxic OPs.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Estudos Retrospectivos , Espectrometria de Massas em Tandem/métodos , Proteínas/metabolismo
4.
Nat Methods ; 18(11): 1304-1316, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34725484

RESUMO

Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.


Assuntos
Glicopeptídeos/sangue , Glicoproteínas/sangue , Informática/métodos , Proteoma/análise , Proteômica/métodos , Pesquisadores/estatística & dados numéricos , Software , Glicosilação , Humanos , Proteoma/metabolismo , Espectrometria de Massas em Tandem
5.
Analyst ; 149(13): 3625-3635, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38775334

RESUMO

Urine provides an ideal source for disease biomarker discovery. High-adhesion contaminants such as urobilin, which are difficult to remove from urine, can severely interfere with urinary proteomic analysis. Here, we aimed to establish a strategy based on single-pot, solid-phase-enhanced sample preparation (SP3) technology to prepare samples for urinary proteomics analysis that almost completely eliminates the impact of urobilin. A systematic evaluation of the effects of two urinary protein precipitation methods, two types of protein lysis buffers, and different ratios of magnetic digestion beads on the identification and quantification of the microscale urinary proteome was conducted. Our results indicate that methanol-chloroform precipitation, coupled with efficient lysis facilitated by urea, and subsequent enzymatic digestion using a mix of hydrophilic and hydrophobic magnetic beads offers the best performance. Further applying this strategy to the urine of patients with benign prostatic hyperplasia, prostate cancer and healthy individuals, combined with a narrow window of data-independent acquisition, FGFR4, MYLK, ORM2, GOLM1, SPP1, CD55, CSF1, DLD and TIMP3 were identified as potential biomarkers to discriminate benign prostatic hyperplasia and prostate cancer patients.


Assuntos
Neoplasias da Próstata , Proteômica , Humanos , Proteômica/métodos , Masculino , Neoplasias da Próstata/urina , Hiperplasia Prostática/urina , Proteoma/análise , Biomarcadores/urina , Microesferas , Pessoa de Meia-Idade
6.
J Immunol ; 209(3): 593-605, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868636

RESUMO

Teleost tetramer IgM is the predominant Ig in the immune system and plays essential roles in host defense against microbial infection. Due to variable disulfide polymerization of the monomeric subunits, tetrameric IgM possesses considerable structural diversity. Previous work indicated that the teleost IgM H chain was fully occupied with complex-type N-glycans. However, after challenge with trinitrophenyl (TNP) Ag, the complex N-glycans in the Asn-509 site of Oreochromis niloticus IgM H chain transformed into high mannose. This study, therefore, was conducted to examine the functional roles of the affinity-related high-mannose modification in tilapia IgM. The TNP-specific IgM Ab affinity maturation was revealed in tilapia over the response. A positive correlation between TNP-specific IgM affinity and its disulfide polymerization level of isomeric structure was demonstrated. Mass spectrometric analysis indicated that the relationship between IgM affinity and disulfide polymerization was associated with the Asn-509 site-specific high-mannose modification. Furthermore, the increase of high mannose content promoted the combination of IgM and mannose receptor (MR) on the surface of phagocytes. Moreover, the increased interaction of IgM and MR amplified the phagocytic ability of phagocytes to Streptococcus agalactiae. To our knowledge, this study demonstrates that site-specific high-mannose modification associates with IgM Ab affinity and its structural disulfide polymerization and amplifies the phagocytosis of phagocytes by the combination of IgM and MR. The present study provides evidence for understanding the association of IgM structure and function during the evolution of the immune system.

7.
Anal Chem ; 95(49): 17974-17980, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011496

RESUMO

Global phosphoproteome profiling can provide insights into cellular signaling and disease pathogenesis. To achieve comprehensive phosphoproteomic analyses with minute quantities of material, we developed a rapid and sensitive phosphoproteomics sample preparation strategy based on ultrasound. We found that ultrasonication-assisted digestion can significantly improve peptide identification by 20% due to the generation of longer peptides that can be detected by mass spectrometry. By integrating this rapid ultrasound-assisted peptide-identification-enhanced proteomic method (RUPE) with streamlined phosphopeptide enrichment steps, we established RUPE-phospho, a fast and efficient strategy to characterize protein phosphorylation in mass-limited samples. This approach dramatically reduces the sample loss and processing time: 24 samples can be processed in 3 h; 5325 phosphosites, 4549 phosphopeptides, and 1888 phosphoproteins were quantified from 5 µg of human embryonic kidney (HEK) 293T cell lysate. In addition, 9219 phosphosites were quantified from 1-2 mg of OCT-embedded mouse brain with 120 min streamlined RUPE-phospho workflow. RUPE-phospho facilitates phosphoproteome profiling for microscale samples and will provide a powerful tool for proteomics-driven precision medicine research.


Assuntos
Fosfoproteínas , Proteômica , Animais , Camundongos , Humanos , Proteômica/métodos , Fluxo de Trabalho , Fosforilação , Fosfoproteínas/metabolismo , Fosfopeptídeos/análise , Proteoma/metabolismo
8.
BMC Med ; 21(1): 481, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049860

RESUMO

BACKGROUND: Microvascular invasion (MVI) is the main factor affecting the prognosis of patients with hepatocellular carcinoma (HCC). The aim of this study was to identify accurate diagnostic biomarkers from urinary protein signatures for preoperative prediction. METHODS: We conducted label-free quantitative proteomic studies on urine samples of 91 HCC patients and 22 healthy controls. We identified candidate biomarkers capable of predicting MVI status and combined them with patient clinical information to perform a preoperative nomogram for predicting MVI status in the training cohort. Then, the nomogram was validated in the testing cohort (n = 23). Expression levels of biomarkers were further confirmed by enzyme-linked immunosorbent assay (ELISA) in an independent validation HCC cohort (n = 57). RESULTS: Urinary proteomic features of healthy controls are mainly characterized by active metabolic processes. Cell adhesion and cell proliferation-related pathways were highly defined in the HCC group, such as extracellular matrix organization, cell-cell adhesion, and cell-cell junction organization, which confirms the malignant phenotype of HCC patients. Based on the expression levels of four proteins: CETP, HGFL, L1CAM, and LAIR2, combined with tumor diameter, serum AFP, and GGT concentrations to establish a preoperative MVI status prediction model for HCC patients. The nomogram achieved good concordance indexes of 0.809 and 0.783 in predicting MVI in the training and testing cohorts. CONCLUSIONS: The four-protein-related nomogram in urine samples is a promising preoperative prediction model for the MVI status of HCC patients. Using the model, the risk for an individual patient to harbor MVI can be determined.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Proteômica , Estudos Retrospectivos , Invasividade Neoplásica/patologia , Microvasos , Biomarcadores
9.
Glycoconj J ; 40(5): 541-549, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37542637

RESUMO

Alpha-1,6 fucosylation of N-glycans (core fucosylation, CF) represents a unique form of N-glycans and is widely involved in disease progression. In order to accurately identify CF glycoproteins, several approaches have been developed based on sequential cleavage with different glycosidases to truncate the N-glycans. Since multi-step sample treatments may introduce quantitation bias and affect the practicality of these approaches in large-scale applications. Here, we systematically evaluated the performance of the single-step treatment of intact glycopeptides by endoglycosidase F3 for CF glycoproteome. The single-step truncation (SST) strategy demonstrated higher quantitative stability and higher efficiency compared with previous approaches. The strategy was further practiced on both cell lines and serum samples. The dysregulation of CF glycopeptides between preoperative and postoperative serum from patients with pancreatic ductal adenocarcinoma was revealed, and the CF modifications of BCHE_N369, CDH5_N112 and SERPIND1_N49 were found to be potential prognostic markers. This study thus provides an efficient solution for large-scale quantitative analysis of the CF glycoproteome.


Assuntos
Glicopeptídeos , Glicoproteínas , Humanos , Glicosilação , Glicoproteínas/metabolismo , Glicopeptídeos/análise , Polissacarídeos
10.
Mol Ther ; 30(2): 763-781, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34678513

RESUMO

Renal interstitial fibrosis (RIF) is an incurable pathological lesion in chronic kidney diseases. Pericyte activation is the major pathological characteristic of RIF. Fibroblast and macrophage activation are also involved in RIF. Studies have revealed that core fucosylation (CF), an important post-translational modification of proteins, plays a key role in pericyte activation and RIF by regulating multiple profibrotic signaling pathways as a hub-like target. Here, we reveal that mesenchymal stem cell (MSC)-derived exosomes reside specifically in the injured kidney and deliver microRNA (miR)-34c-5p to reduce cellular activation and RIF by inhibiting CF. Furthermore, we showed that the CD81-epidermal growth factor receptor (EGFR) ligand-receptor complex aids the entry of exosomal miR-34c-5p into pericytes, fibroblasts, and macrophages. Altogether, our findings reveal a novel role of MSC-derived exosomes in inhibiting multicellular activation via CF and provide a potential intervention strategy for renal fibrosis.


Assuntos
Exossomos , Nefropatias , Células-Tronco Mesenquimais , MicroRNAs , Exossomos/metabolismo , Fibrose , Humanos , Rim/patologia , Nefropatias/metabolismo , Nefropatias/terapia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/administração & dosagem , MicroRNAs/genética , MicroRNAs/metabolismo
11.
Anal Chem ; 94(25): 8827-8832, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35699231

RESUMO

Peripheral blood mononuclear cells (PBMCs) play vital roles in physiological and pathological processes and represent a rich source for disease monitoring. Typical molecular profiling on PBMCs involves the sorting of cell subsets and thus requires a large volume of peripheral blood (PB), which impedes the clinical practicability of omics tools in PBMC measurements. It would be clinically invaluable to develop a convenient approach for preparing PBMCs from small volumes of PB and for deep proteome profiling of PBMCs. To this end, here, we designed an apparatus (PBMC-mCap) for microscale enrichment and proteome analysis of PBMCs, which pushed the needed PB volume from the normal 2 mL or higher to 100 µL or lower, comparable to the volume of a drop of finger blood. A PBMC-specific mass spectra library containing 8869 proteins and 121,956 peptides was further built, which, in combination with the optimized data-independent acquisition strategy, helped to identify 6000 and 6500 proteins from PBMCs with 100 µL and 1 mL of PB as initial materials, respectively. Further application of the strategy for PBMC proteomes revealed a steady difference between gender (male vs female) and upon stimulus (COVID-19 vaccination). For the latter, we observed differentially expressed genes and pathways involving the activation of immune cells, including the NF-κB pathway, inflammation response, and antiviral response. Our strategy for the proteome analysis of microscale PBMCs may provide a convenient clinical toolkit for disease diagnosis and healthy state monitoring.


Assuntos
COVID-19 , Leucócitos Mononucleares , Vacinas contra COVID-19 , Feminino , Humanos , Masculino , Espectrometria de Massas , Proteoma/metabolismo
12.
Anal Chem ; 93(47): 15584-15589, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34787389

RESUMO

Histidine phosphorylation (pHis), which plays a key role in signal transduction in bacteria and lower eukaryotes, has been shown to be involved in tumorigenesis. Due to its chemical instability, substoichiometric properties, and lack of specific enrichment reagents, there is a lack of approaches for specific and unbiased enrichment of pHis-proteins/peptides. In this study, an integrated strategy was established and evaluated as an unbiased tool for exploring the histidine phosphoproteome. First, taking advantage of the lower charge states of pHis-peptides versus the non-modified naked peptides at weak acid solution (∼pH 2.7), strong cation exchange (SCX) chromatography was used to differentiate modified and non-modified naked peptides. Furthermore, selective enrichment of the pHis-peptide was performed by applying Cu-IDA beads enrichment. Finally, stable isotope dimethyl labeling was introduced to guarantee high-confidence assignment of pHis-peptides. Using this integrated strategy, 563 different pHis-peptides (H = 1) in 385 proteins were identified from HeLa lysates. Motif analysis revealed that pHis prefers hydrophobic amino acids and has the consensus motif-HxxK, which covered the reports from different approaches. Thus, our method may provide an unbiased and effective tool to reveal histidine phosphoproteome and to study the biological process and function of histidine phosphorylation.


Assuntos
Histidina , Proteoma , Células HeLa , Histidina/metabolismo , Humanos , Peptídeos , Fosforilação
13.
Nephrol Dial Transplant ; 37(1): 33-41, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34152412

RESUMO

BACKGROUND: Immunoglobulin A1 (IgA1) O-glycosylation plays an important role in the pathogenesis of IgA nephropathy (IgAN). However, variations in IgA1 O-glycoforms have not been explored. We aimed to investigate the IgA1 O-glycoforms in the hinge region (HR) of polymeric IgA1 (pIgA1) and then evaluate the association between IgA1 O-glycoforms and crescent formation in IgAN. METHODS: The discovery cohort (Cohort 1) comprised 11 crescentic IgAN patients, 10 noncrescentic IgAN patients and 10 healthy controls and the validation cohort (Cohort 2) comprised 11 crescentic IgAN patients, 9 noncrescentic IgAN patients and 9 healthy controls. A total of 143 IgAN patients with different crescent percentages (Cohort 3) were also included. pIgA1 was purified from the plasma of the participants. The variation in O-glycoforms was evaluated by estimating the molecular weights of IgA1 hinge glycopeptides using reversed-phase liquid chromatography and tandem mass spectrometry under electron-transfer/higher-energy collision dissociation fragmentation mode. RESULTS: In the discovery cohort (Cohort 1), the number of N-acetylgalactosamine (GalNAc) bound to one HR was lower in IgAN patients. The proportions of GalNAc3 (defined as O-glycans bound to one HR at three sites) and GalNAc4 were highest in crescentic IgAN patients, followed by noncrescentic IgAN patients, and were lowest in healthy controls [GalNAc 3: 9.92 ± 3.37% versus 6.65 ± 1.53% versus 4.05 ± 1.24% (P < 0.001); GalNAc4: 45.91 ± 4.75% versus 41.13 ± 2.95% versus 40.98 ± 2.95% (P = 0.004), respectively]. The proportions of GalNAc5 and GalNAc6 were lowest in crescentic IgAN patients followed by noncrescentic IgAN patients and were highest in healthy controls [GalNAc5: 50.15 ± 4.27% versus 47.92 ± 4.09% versus 45.87 ± 3.79% (P = 0.028); GalNAc6: 6.58 ± 2.53% versus 6.04 ± 1.35% versus 4.65 ± 2.27% (P = 0.034), respectively]. These results were consistent in the validation cohort (Cohort 2). In another cohort with 143 patients with different crescent percentages (Cohort 3), the number of GalNAc in pIgA1 decreased with an increasing percentage of crescents. CONCLUSIONS: The number of GalNAc in IgA1 HRs was lower in IgAN patients, especially in crescentic IgAN patients, and may be associated with a severe IgAN phenotype.


Assuntos
Glomerulonefrite por IGA , Glicosilação , Humanos , Imunoglobulina A , Fenótipo , Polissacarídeos
14.
Mol Cell Proteomics ; 18(2): 391-405, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420486

RESUMO

The open (mass tolerant) search of tandem mass spectra of peptides shows great potential in the comprehensive detection of post-translational modifications (PTMs) in shotgun proteomics. However, this search strategy has not been widely used by the community, and one bottleneck of it is the lack of appropriate algorithms for automated and reliable post-processing of the coarse and error-prone search results. Here we present PTMiner, a software tool for confident filtering and localization of modifications (mass shifts) detected in an open search. After mass-shift-grouped false discovery rate (FDR) control of peptide-spectrum matches (PSMs), PTMiner uses an empirical Bayesian method to localize modifications through iterative learning of the prior probabilities of each type of modification occurring on different amino acids. The performance of PTMiner was evaluated on three data sets, including simulated data, chemically synthesized peptide library data and modified-peptide spiked-in proteome data. The results showed that PTMiner can effectively control the PSM FDR and accurately localize the modification sites. At 1% real false localization rate (FLR), PTMiner localized 93%, 84 and 83% of the modification sites in the three data sets, respectively, far higher than two open search engines we used and an extended version of the Ascore localization algorithm. We then used PTMiner to analyze a draft map of human proteome containing 25 million spectra from 30 tissues, and confidently identified over 1.7 million modified PSMs at 1% FDR and 1% FLR, which provided a system-wide view of both known and unknown PTMs in the human proteome.


Assuntos
Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Bases de Dados de Proteínas , Humanos , Ferramenta de Busca , Software
15.
J Cell Mol Med ; 24(6): 3572-3581, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32045104

RESUMO

Both Tamm-Horsfall protein (THP) and collectin-11 (CL-11) are important molecules in acute kidney injury (AKI). In this study, we measured the change of glycosylation of THP in patients with AKI after surgery, using MALDI-TOF MS and lectin array analysis. The amount of high-mannose and core fucosylation in patients with AKI were higher than those in healthy controls. In vitro study showed that THP could bind to CL-11 with affinity at 9.41 × 10-7  mol/L and inhibited activation of complement lectin pathway. The binding affinity decreased after removal of glycans on THP. Removal of fucose completely ablated the binding between the two proteins. While removal of high-mannose or part of the N-glycan decreased the binding ability to 30% or 60%. The results indicated that increase of fucose on THP played an important role via complement lectin pathway in AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Colectinas/metabolismo , Uromodulina/metabolismo , Idoso , Animais , Estudos de Casos e Controles , Galinhas , Eritrócitos/metabolismo , Feminino , Glicosilação , Hemólise , Humanos , Lectinas/metabolismo , Masculino , Pessoa de Meia-Idade , Polissacarídeos/metabolismo , Ligação Proteica , Ficolinas
16.
J Biol Chem ; 294(45): 16620-16633, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31527085

RESUMO

O-GlcNAcylation is a ubiquitous protein glycosylation playing different roles on variant proteins. O-GlcNAc transferase (OGT) is the unique enzyme responsible for the sugar addition to nucleocytoplasmic proteins. Recently, multiple O-GlcNAc sites have been observed on short-form OGT (sOGT) and nucleocytoplasmic OGT (ncOGT), both of which locate in the nucleus and cytoplasm in cell. Moreover, O-GlcNAcylation of Ser389 in ncOGT (1036 amino acids) affects its nuclear translocation in HeLa cells. To date, the major O-GlcNAcylation sites and their roles in sOGT remain unknown. Here, we performed LC-MS/MS and mutational analyses to seek the major O-GlcNAcylation site on sOGT. We identified six O-GlcNAc sites in the tetratricopeptide repeat domain in sOGT, with Thr12 and Ser56 being two "key" sites. Thr12 is a dominant O-GlcNAcylation site, whereas the modification of Ser56 plays a role in regulating sOGT O-GlcNAcylation, partly through Thr12In vitro activity and pulldown assays demonstrated that O-GlcNAcylation does not affect sOGT activity but does affect sOGT-interacting proteins. In HEK293T cells, S56A bound to and hence glycosylated more proteins in contrast to T12A and WT sOGT. By proteomic and bioinformatics analyses, we found that T12A and S56A differed in substrate proteins (e.g. HNRNPU and PDCD6IP), which eventually affected cell cycle progression and/or cell proliferation. These findings demonstrate that O-GlcNAcylation modulates sOGT substrate selectivity and affects its role in the cell. The data also highlight the regulatory role of O-GlcNAcylation at Thr12 and Ser56.


Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Serina/metabolismo , Treonina/metabolismo , Sequência de Aminoácidos , Pontos de Checagem do Ciclo Celular , Núcleo Celular/metabolismo , Proliferação de Células , Cromatografia Líquida de Alta Pressão , Glicopeptídeos/análise , Glicopeptídeos/química , Glicosilação , Células HEK293 , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Espectrometria de Massas em Tandem
17.
Anal Chem ; 92(4): 2896-2901, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31986883

RESUMO

Core fucosylation (CF) is a special form of N-glycosylation and plays an important role in pathological and biological processes. Increasing efforts in this area are focused on the identification of CF glycosites, whereas evidence showed that the stoichiometry of CF occupancy is functionally important. Here, an integrated strategy based on "Glycan-Simplification and Paired-Peaks-extraction" (GSPPE) for detecting large-scale stoichiometries of CF was developed. After HILIC enrichment of intact glycopeptides, sequential cleavages by endoglycosidases H and endoglycosidases F3 were performed to generate simplified glycopeptide forms (SGFs), i.e., peptide-GlcNAc (pep-HN) and peptide-GlcNAc-Fucose (pep-CF). These paired SGFs were found to be eluted consecutively on a reversed-phase chromatography column, which allowed us to obtain peak areas of SGF pairs, even if only one of the peaks was captured by the mass spectrometer (MS), by introducing the Paired-Peaks-Extraction algorithm. Thus, the missing value dilemma of random data-dependent MS/MS acquisition was reduced and the stoichiometry of site-specific CF could be calculated. We systematically evaluated the feasibility of this strategy using standard glycoproteins and then explored urinary samples from healthy individuals and hepatocellular carcinoma (HCC) patients. In total, 1449 highly reliable core fucose glycosites and their corresponding CF stoichiometries were obtained. Dozens of glycosites that differed significantly in the urine of healthy individuals and HCC patients were disclosed. The developed approach and program presented here may promote studies on core fucosylation and lead to a deeper understanding of their dysregulation in physiological- or pathological processes.


Assuntos
Fucose/metabolismo , Glicoproteínas/urina , Polissacarídeos/metabolismo , Fucose/química , Glicoproteínas/metabolismo , Glicosídeo Hidrolases/metabolismo , Humanos , Polissacarídeos/química
18.
Anal Chem ; 92(8): 5695-5700, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32212632

RESUMO

Glycan modification prompts important concerns about the quality control of biopharmaceutical production. Conbercept is a multiglycosylated recombinant fusion protein drug approved for the treatment of age-related macular degeneration (AMD). With 14 N-glycosites in the molecule and 7 N-glycosites in the monomer, the charge isomer separation and characterization of conbercept pose great challenges due to its enormous heterogeneities. The batch-to-batch stability on the charge isomer distribution and the possible causation of the pattern necessitate the development of effective analytical approaches. Here, the immobilized pH gradient (IPG)-based two-dimensional gel electrophoresis (2-DE) approach was first optimized to achieve high-resolution, high-reproducible separation and preparation of charge isomers. Then, combined with the quantitative analysis strategy of site-specific N-glycan heterogeneity based on the diagnostic MS2 ion (peptides+GlcNAc, Y1 ions) of glycopeptides, an integrated approach for the quantitation of site-specific N-glycan heterogeneities among charge isomers was established. Finally, the quantitation of site-specific N-glycoforms in each of the 2-DE resolved spots were performed, and the results showed that the sialylation tends to increase for gel spots located in the acidic regions. This study provides an effective approach to separate the charge isomers of the heavily glycosylated protein drugs, and to quantitatively explore the site-specific N-glycans dynamics along with the different charge isomers.


Assuntos
Polissacarídeos/análise , Proteínas Recombinantes de Fusão/química , Configuração de Carboidratos , Eletroforese em Gel Bidimensional , Glicosilação , Humanos , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Estereoisomerismo
20.
Proc Natl Acad Sci U S A ; 114(33): 8782-8787, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768809

RESUMO

New types of modifications of histones keep emerging. Recently, histone H4K8 2-hydroxyisobutyrylation (H4K8hib) was identified as an evolutionarily conserved modification. However, how this modification is regulated within a cell is still elusive, and the enzymes adding and removing 2-hydroxyisobutyrylation have not been found. Here, we report that the amount of H4K8hib fluctuates in response to the availability of carbon source in Saccharomyces cerevisiae and that low-glucose conditions lead to diminished modification. The removal of the 2-hydroxyisobutyryl group from H4K8 is mediated by the histone lysine deacetylase Rpd3p and Hos3p in vivo. In addition, eliminating modifications at this site by alanine substitution alters transcription in carbon transport/metabolism genes and results in a reduced chronological life span (CLS). Furthermore, consistent with the glucose-responsive H4K8hib regulation, proteomic analysis revealed that a large set of proteins involved in glycolysis/gluconeogenesis are modified by lysine 2-hydroxyisobutyrylation. Cumulatively, these results established a functional and regulatory network among Khib, glucose metabolism, and CLS.


Assuntos
Glucose/metabolismo , Histonas/metabolismo , Homeostase/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Gluconeogênese/fisiologia , Glicólise/fisiologia , Histona Desacetilases/metabolismo , Lisina/metabolismo , Proteômica/métodos , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA