Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nano Lett ; 22(5): 2009-2015, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226510

RESUMO

Surface plasmons on silver nanostructures have a broad range of tunable resonance properties in visible and near-infrared regimes, which possess wide applications in nanophotonics and optoelectronics. Here we use a femtosecond laser to excite surface plasmons on a silver film and trace the subsequent transient dynamics via photon-induced near-field electron microscopy (PINEM). A polarization experiment of PINEM demonstrates a conspicuous polarization dependence of the transient surface plasmon field on the silver film; however, unlike silver nanowires and nanorods, there is no polarization dependence for the PINEM intensity. This compelling finding suggests a thin film platform can be more easily used to identify the temporal and spatial overlaps between the pump laser and probe electron pulses in 4D ultrafast electron microscopy (UEM). Our work illustrates the femtosecond excitation and transient behavior of the surface plasmons on silver film and paves a universal, simple way for identifying the time zero in 4D UEM.


Assuntos
Elétrons , Prata , Microscopia Eletrônica , Nanotecnologia , Fótons , Prata/química
2.
Proc Natl Acad Sci U S A ; 116(44): 22014-22019, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611413

RESUMO

T cells can be controllably stimulated through antigen-specific or nonspecific protocols. Accompanying functional hallmarks of T cell activation can include cytoskeletal reorganization, cell size increase, and cytokine secretion. Photon-induced near-field electron microscopy (PINEM) is used to image and quantify evanescent electric fields at the surface of T cells as a function of various stimulation conditions. While PINEM signal strength scales with multiple of the biophysical changes associated with T cell functional activation, it mostly strongly correlates with antigen-engagement of the T cell receptors, even under conditions that do not lead to functional T cell activation. PINEM image analysis suggests that a stimulation-induced reorganization of T cell surface structure, especially over length scales of a few hundred nanometers, is the dominant contributor to these PINEM signal changes. These experiments reveal that PINEM can provide a sensitive label-free probe of nanoscale cellular surface structures.


Assuntos
Ativação Linfocitária , Linfócitos T/ultraestrutura , Humanos , Células Jurkat , Microscopia Eletrônica/métodos , Propriedades de Superfície
3.
Angew Chem Int Ed Engl ; 60(32): 17671-17679, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34042234

RESUMO

We report the single crystal XRD and MicroED structure, magnetic susceptibility, and EPR data of a series of CaMn3IV O4 and YMn3IV O4 complexes as structural and spectroscopic models of the cuboidal subunit of the oxygen-evolving complex (OEC). The effect of changes in heterometal identity, cluster geometry, and bridging oxo protonation on the spin-state structure was investigated. In contrast to previous computational models, we show that the spin ground state of CaMn3IV O4 complexes and variants with protonated oxo moieties need not be S=9/2. Desymmetrization of the pseudo-C3 -symmetric Ca(Y)Mn3IV O4 core leads to a lower S=5/2 spin ground state. The magnitude of the magnetic exchange coupling is attenuated upon oxo protonation, and an S=3/2 spin ground state is observed in CaMn3IV O3 (OH). Our studies complement the observation that the interconversion between the low-spin and high-spin forms of the S2 state is pH-dependent, suggesting that the (de)protonation of bridging or terminal oxygen atoms in the OEC may be connected to spin-state changes.


Assuntos
Materiais Biomiméticos/química , Hidrocarbonetos Aromáticos com Pontes/química , Complexos de Coordenação/química , Prótons , Materiais Biomiméticos/síntese química , Hidrocarbonetos Aromáticos com Pontes/síntese química , Cálcio/química , Complexos de Coordenação/síntese química , Espectroscopia de Ressonância de Spin Eletrônica , Manganês/química , Estrutura Molecular , Complexo de Proteína do Fotossistema II/química , Ítrio/química
4.
Proc Natl Acad Sci U S A ; 113(3): 503-8, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729878

RESUMO

Understanding the dynamical nature of the catalytic active site embedded in complex systems at the atomic level is critical to developing efficient photocatalytic materials. Here, we report, using 4D ultrafast electron microscopy, the spatiotemporal behaviors of titanium and oxygen in a titanosilicate catalytic material. The observed changes in Bragg diffraction intensity with time at the specific lattice planes, and with a tilted geometry, provide the relaxation pathway: the Ti(4+)=O(2-) double bond transformation to a Ti(3+)-O(1-) single bond via the individual atomic displacements of the titanium and the apical oxygen. The dilation of the double bond is up to 0.8 Å and occurs on the femtosecond time scale. These findings suggest the direct catalytic involvement of the Ti(3+)-O(1-) local structure, the significance of nonthermal processes at the reactive site, and the efficient photo-induced electron transfer that plays a pivotal role in many photocatalytic reactions.

5.
Phys Chem Chem Phys ; 20(17): 11673-11681, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29675523

RESUMO

Carbon dots (CDs) have potential applications in various fields such as energy, catalysis, and bioimaging due to their strong and tuneable photoluminescence (PL), low toxicity, and robust chemical inertness. Although several PL mechanisms have been proposed, the origin of PL in CDs is still in debate because of the ensembled nature of the heterogeneous luminophores present in the CDs. To unravel the origin of PL in CDs, we performed time-resolved spectroscopy on two types of CDs: nitrogen-doped (N-CD) and boron-nitrogen co-doped (BN-CD). The PL decays were fitted by stretched exponential functions to estimate the distribution of the decay kinetics in the CDs, which have different PL lifetime distributions. Both CDs displayed main, blue emission decaying in 15 ns, which originates from the dominant molecular state. The analysis of the non-exponential PL decay using stretched exponential fits revealed that the functional surface luminophores are of less variety but of more environmental heterogeneity and have much lower populations in BN-CD than in N-CD.

6.
Proc Natl Acad Sci U S A ; 112(14): E1697-704, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831539

RESUMO

We investigated the changes of heme coordination in purified soluble guanylate cyclase (sGC) by time-resolved spectroscopy in a time range encompassing 11 orders of magnitude (from 1 ps to 0.2 s). After dissociation, NO either recombines geminately to the 4-coordinate (4c) heme (τG1 = 7.5 ps; 97 ± 1% of the population) or exits the heme pocket (3 ± 1%). The proximal His rebinds to the 4c heme with a 70-ps time constant. Then, NO is distributed in two approximately equal populations (1.5%). One geminately rebinds to the 5c heme (τG2 = 6.5 ns), whereas the other diffuses out to the solution, from where it rebinds bimolecularly (τ = 50 µs with [NO] = 200 µM) forming a 6c heme with a diffusion-limited rate constant of 2 × 10(8) M(-1)⋅s(-1). In both cases, the rebinding of NO induces the cleavage of the Fe-His bond that can be observed as an individual reaction step. Saliently, the time constant of bond cleavage differs depending on whether NO binds geminately or from solution (τ5C1 = 0.66 µs and τ5C2 = 10 ms, respectively). Because the same event occurs with rates separated by four orders of magnitude, this measurement implies that sGC is in different structural states in both cases, having different strain exerted on the Fe-His bond. We show here that this structural allosteric transition takes place in the range 1-50 µs. In this context, the detection of NO binding to the proximal side of sGC heme is discussed.


Assuntos
Guanilato Ciclase/química , Histidina/química , Receptores Citoplasmáticos e Nucleares/química , Sítio Alostérico , Animais , Bovinos , Heme/química , Hemoglobinas/química , Ferro/química , Conformação Molecular , Óxido Nítrico/química , Ligação Proteica , Transdução de Sinais , Guanilil Ciclase Solúvel , Espectrofotometria , Fatores de Tempo
7.
Phys Chem Chem Phys ; 19(32): 21317-21334, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28759066

RESUMO

Apart from its role in electron transfer, mitochondrial cytochrome c also plays a role in apoptosis and is subject to nitrosylation. The cleavage of the Fe-Met80 bond plays a role in several processes including the release of Cyt c from mitochondria or increase of its peroxidase activity. Nitrosylation of Cyt c precludes the reformation of the disrupted Fe-Met80 bond and was shown to occur during apoptosis. These physiological properties are associated with a conformational change of the heme center of Cyt c. Here, we demonstrate that NO binding induces pronounced heme conformational changes in the six-coordinate Cyt c-NO complex. Equilibrium and time-resolved Raman data reveal that the heme structural conformation depends both on the nature of the distal iron ligand (NO or Met80) and on the Fe2+ or Fe3+ heme redox state. Upon nitrosylation, the heme ruffling distortion is greatly enhanced for ferrous Cyt c. Contrastingly, the initial strong heme distortion in native ferric Cyt c almost disappears after NO binding. We measured the heme coordination dynamics in the picosecond to second time range and identified Met80 and NO rebinding phases using time-resolved Raman and absorption spectroscopies. Dissociation of NO instantly produces 5-coordinate heme with a domed structure which continues to rearrange within 15 ps, while the initial ruffling distortion disappears. The rates of Cyt c-NO complex formation measured by transient absorption are kon = 1.81 × 106 M-1 s-1 for ferric Cyt c and 83 M-1 s-1 for ferrous Cyt c. After NO dissociation and exit from the heme pocket, the rebinding of Met80 to the heme iron takes place 6 orders of magnitude more slowly (3-5 µs) than Met80 rebinding in the absence of NO (5 ps). Altogether, these data reveal the structural and dynamic properties of Cyt c in interaction with nitric oxide relevant for the molecular mechanism of apoptosis.


Assuntos
Citocromos c/química , Compostos Férricos/química , Compostos Ferrosos/química , Óxido Nítrico/química , Animais , Citocromos c/metabolismo , Heme/química , Cavalos , Cinética , Mitocôndrias/metabolismo , Oxirredução , Análise Espectral Raman
8.
Angew Chem Int Ed Engl ; 56(38): 11498-11501, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28736869

RESUMO

Photon-induced near-field electron microscopy (PINEM) is a technique to produce and then image evanescent electromagnetic fields on the surfaces of nanostructures. Most previous applications of PINEM have imaged surface plasmon-polariton waves on conducting nanomaterials. Here, the application of PINEM on whole human cancer cells and membrane vesicles isolated from them is reported. We show that photons induce time-, orientation-, and polarization-dependent evanescent fields on the surfaces of A431 cancer cells and isolated membrane vesicles. Furthermore, the addition of a ligand to the major surface receptor on these cells and vesicles (epidermal growth factor receptor, EGFR) reduces the intensity of these fields in both preparations. We propose that in the absence of plasmon waves in biological samples, these evanescent fields reflect the changes in EGFR kinase domain polarization upon ligand binding.


Assuntos
Células Eucarióticas/citologia , Fótons , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Microscopia Eletrônica , Tamanho da Partícula , Propriedades de Superfície
9.
Proc Natl Acad Sci U S A ; 109(29): 11705-10, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753521

RESUMO

In vivo, F-actin flows are observed at different cell life stages and participate in various developmental processes during asymmetric divisions in vertebrate oocytes, cell migration, or wound healing. Here, we show that confinement has a dramatic effect on F-actin spatiotemporal organization. We reconstitute in vitro the spontaneous generation of F-actin flow using Xenopus meiotic extracts artificially confined within a geometry mimicking the cell boundary. Perturbations of actin polymerization kinetics or F-actin nucleation sites strongly modify the network flow dynamics. A combination of quantitative image analysis and biochemical perturbations shows that both spatial localization of F-actin nucleators and actin turnover play a decisive role in generating flow. Interestingly, our in vitro assay recapitulates several symmetry-breaking processes observed in oocytes and early embryonic cells.


Assuntos
Actinas/metabolismo , Citoplasma/metabolismo , Meiose/fisiologia , Xenopus/fisiologia , Animais , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Cinética , Microscopia de Fluorescência , Xenopus/metabolismo
10.
Biochemistry ; 52(40): 7007-21, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24040745

RESUMO

Hemoglobin HbI from the clam Lucina pectinata is involved in H2S transport, whereas homologous heme protein HbII/III is involved in O2 metabolism. Despite similar tertiary structures, HbI and HbII/III exhibit very different reactivity toward heme ligands H2S, O2, and NO. To investigate this reactivity at the heme level, we measured the dynamics of ligand interaction by time-resolved absorption spectroscopy in the picosecond to nanosecond time range. We demonstrated that H2S can be photodissociated from both ferric and ferrous HbI. H2S geminately rebinds to ferric and ferrous out-of-plane iron with time constants (τgem) of 12 and 165 ps, respectively, with very different proportions of photodissociated H2S exiting the protein (24% in ferric and 80% in ferrous HbI). The Gln(E7)His mutation considerably changes H2S dynamics in ferric HbI, indicating the role of Gln(E7) in controling H2S reactivity. In ferric HbI, the rate of diffusion of H2S from the solvent into the heme pocket (kentry) is 0.30 µM(-1) s(-1). For the HbII/III-O2 complex, we observed mainly a six-coordinate vibrationally excited heme-O2 complex with O2 still bound to the iron. This explains the low yield of O2 photodissociation and low koff from HbII/III, compared with those of HbI and Mb. Both isoforms behave very differently with regard to NO and O2 dynamics. Whereas the amplitude of geminate rebinding of O2 to HbI (38.5%) is similar to that of myoglobin (34.5%) in spite of different distal heme sites, it appears to be much larger for HbII/III (77%). The distal Tyr(B10) side chain present in HbII/III increases the energy barrier for ligand escape and participates in the stabilization of bound O2 and NO.


Assuntos
Hemoglobinas/química , Sulfeto de Hidrogênio/química , Óxido Nítrico/química , Oxigênio/química , Sequência de Aminoácidos , Animais , Bivalves , Compostos Férricos/química , Compostos Ferrosos/química , Hemoglobinas/genética , Hemoglobinas/metabolismo , Ligação de Hidrogênio , Ligantes , Dados de Sequência Molecular , Processos Fotoquímicos , Alinhamento de Sequência , Espectrofotometria
11.
J Biol Chem ; 287(9): 6851-9, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22223482

RESUMO

Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor. The mechanisms of activation and deactivation of this heterodimeric enzyme are unknown. For deciphering them, functional domains can be overexpressed. We have probed the dynamics of the diatomic ligands NO and CO within the isolated heme domain ß(1)(190) of human sGC by piconanosecond absorption spectroscopy. After photo-excitation of nitrosylated sGC, only NO geminate rebinding occurs in 7.5 ps. In ß(1)(190), both photo-dissociation of 5c-NO and photo-oxidation occur, contrary to sGC, followed by NO rebinding (7 ps) and back-reduction (230 ps and 2 ns). In full-length sGC, CO geminate rebinding to the heme does not occur. In contrast, CO geminately rebinds to ß(1)(190) with fast multiphasic process (35, 171, and 18 ns). We measured the bimolecular association rates k(on) = 0.075 ± 0.01 × 10(6) M(-1) · S(-1) for sGC and 0.83 ± 0.1 × 10(6) M(-1) · S(-1) for ß(1)(190). These different dynamics reflect conformational changes and less proximal constraints in the isolated heme domain with respect to the dimeric native sGC. We concluded that the α-subunit and the ß(1)(191-619) domain exert structural strains on the heme domain. These strains are likely involved in the transmission of the energy and relaxation toward the activated state after Fe(2+)-His bond breaking. This also reveals the heme domain plasticity modulated by the associated domains and subunit.


Assuntos
Guanilato Ciclase/química , Guanilato Ciclase/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Regulação Alostérica , Animais , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Bovinos , Heme/química , Humanos , Ligantes , Luz , Pulmão/enzimologia , Oxirredução , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Guanilil Ciclase Solúvel , Relação Estrutura-Atividade
12.
J Am Chem Soc ; 135(8): 3248-54, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23373628

RESUMO

We provide a direct demonstration of a "kinetic trap" mechanism in the proximal 5-coordinate heme-nitrosyl complex (5c-NO) of cytochrome c' from Alcaligenes xylosoxidans (AXCP) in which picosecond rebinding of the endogenous His ligand following heme-NO dissociation acts as a one-way gate for the release of proximal NO into solution. This demonstration is based upon picosecond transient absorption changes following NO photodissociation of the proximal 5c-NO AXCP complex. We have determined the absolute transient absorption spectrum of 4-coordinate ferrous heme to which NO rebinds with a time constant τ(NO) = 7 ps (k(NO) = 1.4 × 10(11) s(-1)) and shown that rebinding of the proximal histidine to the 4-coordinate heme takes place with a time constant τ(His) = 100 ± 10 ps (k(His) = 10(10) s(-1)) after the release of NO from the proximal heme pocket. This rapid His reattachment acts as a one-way gate for releasing proximal NO by precluding direct proximal NO rebinding once it has left the proximal heme pocket and requiring NO rebinding from solution to proceed via the distal heme face.


Assuntos
Citocromos c/metabolismo , Heme/metabolismo , Histidina/metabolismo , Óxido Nítrico/metabolismo , Citocromos c/química , Heme/química , Histidina/química , Ligantes , Modelos Moleculares , Óxido Nítrico/química , Ligação Proteica , Análise Espectral/métodos
13.
Proc Natl Acad Sci U S A ; 107(31): 13678-83, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20643970

RESUMO

We investigated the ultrafast structural transitions of the heme induced by nitric oxide (NO) binding for several heme proteins by subpicosecond time-resolved resonance Raman and femtosecond transient absorption spectroscopy. We probed the heme iron motion by the evolution of the iron-histidine Raman band intensity after NO photolysis. Unexpectedly, we found that the heme response and iron motion do not follow the kinetics of NO rebinding. Whereas NO dissociation induces quasi-instantaneous iron motion and heme doming (<0.6 ps), the reverse process results in a much slower picosecond movement of the iron toward the planar heme configuration after NO binding. The time constant for this primary domed-to-planar heme transition varies among proteins (approximately 30 ps for myoglobin and its H64V mutant, approximately 15 ps for hemoglobin, approximately 7 ps for dehaloperoxidase, and approximately 6 ps for cytochrome c) and depends upon constraints exerted by the protein structure on the heme cofactor. This observed phenomenon constitutes the primary structural transition in heme proteins induced by NO binding.


Assuntos
Heme/química , Hemoglobinas/química , Mioglobina/química , Óxido Nítrico/química , Regulação Alostérica , Heme/metabolismo , Hemoglobinas/metabolismo , Ligação de Hidrogênio , Cinética , Mutação , Mioglobina/genética , Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Ligação Proteica , Fatores de Tempo
14.
Chem Sci ; 14(31): 8408-8420, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37564404

RESUMO

Some classes of bacteria within phyla possess protein sensors identified as homologous to the heme domain of soluble guanylate cyclase, the mammalian NO-receptor. Named H-NOX domain (Heme-Nitric Oxide or OXygen-binding), their heme binds nitric oxide (NO) and O2 for some of them. The signaling pathways where these proteins act as NO or O2 sensors appear various and are fully established for only some species. Here, we investigated the reactivity of H-NOX from bacterial species toward NO with a mechanistic point of view using time-resolved spectroscopy. The present data show that H-NOXs modulate the dynamics of NO as a function of temperature, but in different ranges, changing its affinity by changing the probability of NO rebinding after dissociation in the picosecond time scale. This fundamental mechanism provides a means to adapt the heme structural response to the environment. In one particular H-NOX sensor the heme distortion induced by NO binding is relaxed in an ultrafast manner (∼15 ps) after NO dissociation, contrarily to other H-NOX proteins, providing another sensing mechanism through the H-NOX domain. Overall, our study links molecular dynamics with functional mechanism and adaptation.

15.
Nat Microbiol ; 7(10): 1661-1672, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36163500

RESUMO

Discovery of antibiotics acting against Gram-negative species is uniquely challenging due to their restrictive penetration barrier. BamA, which inserts proteins into the outer membrane, is an attractive target due to its surface location. Darobactins produced by Photorhabdus, a nematode gut microbiome symbiont, target BamA. We reasoned that a computational search for genes only distantly related to the darobactin operon may lead to novel compounds. Following this clue, we identified dynobactin A, a novel peptide antibiotic from Photorhabdus australis containing two unlinked rings. Dynobactin is structurally unrelated to darobactins, but also targets BamA. Based on a BamA-dynobactin co-crystal structure and a BAM-complex-dynobactin cryo-EM structure, we show that dynobactin binds to the BamA lateral gate, uniquely protruding into its ß-barrel lumen. Dynobactin showed efficacy in a mouse systemic Escherichia coli infection. This study demonstrates the utility of computational approaches to antibiotic discovery and suggests that dynobactin is a promising lead for drug development.


Assuntos
Proteínas de Escherichia coli , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Bactérias Gram-Negativas/metabolismo , Camundongos , Peptídeos/metabolismo , Fenilpropionatos
16.
Commun Chem ; 4(1): 31, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36697566

RESUMO

Heme-Nitric oxide and Oxygen binding protein domains (H-NOX) are found in signaling pathways of both prokaryotes and eukaryotes and share sequence homology with soluble guanylate cyclase, the mammalian NO receptor. In bacteria, H-NOX is associated with kinase or methyl accepting chemotaxis domains. In the O2-sensor of the strict anaerobe Caldanaerobacter tengcongensis (Ct H-NOX) the heme appears highly distorted after O2 binding, but the role of heme distortion in allosteric transitions was not yet evidenced. Here, we measure the dynamics of the heme distortion triggered by the dissociation of diatomics from Ct H-NOX using transient electronic absorption spectroscopy in the picosecond to millisecond time range. We obtained a spectroscopic signature of the heme flattening upon O2 dissociation. The heme distortion is immediately (<1 ps) released after O2 dissociation to produce a relaxed state. This heme conformational change occurs with different proportions depending on diatomics as follows: CO < NO < O2. Our time-resolved data demonstrate that the primary structural event of allostery is the heme distortion in the Ct H-NOX sensor, contrastingly with hemoglobin and the human NO receptor, in which the primary structural events are respectively the motion of the proximal histidine and the rupture of the iron-histidine bond.

17.
ACS Appl Mater Interfaces ; 13(6): 7546-7555, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33544590

RESUMO

Aggregation-induced emission (AIE) phenomena have gained intense interest over the last decades because of its importance in solid-state emission. However, the elucidation of a working mechanism is difficult owing to the limited characterization methods on solid-state molecules, further complicated if dynamic structural changes occur. Here, a series of bis-arylacylhydrazones (BAHs) were synthesized, for which their AIE properties are only turned on by the reversible adsorption of water molecules. We used microcrystal electron diffraction (MicroED) to determine the molecular structures of two BAHs directly from bulk powders (without attempting to grow crystals) prepared in the absence or presence of water adsorption. This study reveals the unambiguous characterization of the dependence of crystal packing on the specific cocrystallization with hydrates. The structural analysis demonstrates that water molecules form strong hydrogen bonds with three neighboring BAH-1, resulting in the almost complete planarization and restriction of the intramolecular rotation of the molecule. MicroED plays an important role in providing a decisive clue for the reversible polymorphism changes induced by the adsorption of water molecules, regulating emissive properties.

18.
Sci Adv ; 4(7): eaat3077, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30035226

RESUMO

Understanding the fundamental dynamics of topological vortex and antivortex naturally formed in microscale/nanoscale ferromagnetic building blocks under external perturbations is crucial to magnetic vortex-based information processing and spintronic devices. All previous studies have focused on magnetic vortex-core switching via external magnetic fields, spin-polarized currents, or spin waves, which have largely prohibited the investigation of novel spin configurations that could emerge from the ground states in ferromagnetic disks and their underlying dynamics. We report in situ visualization of femtosecond laser quenching-induced magnetic vortex changes in various symmetric ferromagnetic Permalloy disks by using Lorentz phase imaging of four-dimensional electron microscopy that enables in situ laser excitation. Besides the switching of magnetic vortex chirality and polarity, we observed with distinct occurrence frequencies a plenitude of complex magnetic structures that have never been observed by magnetic field- or current-assisted switching. These complex magnetic structures consist of a number of newly created topological magnetic defects (vortex and antivortex) strictly conserving the topological winding number, demonstrating the direct impact of topological invariants on magnetization dynamics in ferromagnetic disks. Their spin configurations show mirror or rotation symmetry due to the geometrical confinement of the disks. Combined micromagnetic simulations with the experimental observations reveal the underlying magnetization dynamics and formation mechanism of the optical quenching-induced complex magnetic structures. Their distinct occurrence rates are pertinent to their formation-growth energetics and pinning effects at the disk edge. On the basis of these findings, we propose a paradigm of optical quenching-assisted fast switching of vortex cores for the control of magnetic vortex-based information recording and spintronic devices.

19.
Biomicrofluidics ; 9(4): 044101, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26221196

RESUMO

A microfluidic device is a powerful tool to manipulate in a controlled manner at spatiotemporal scales for biological systems. Here, we describe a simple diffusion-based assay to generate and measure the effect of biochemical perturbations within the cytoplasm of cell-free extracts from Xenopus eggs. Our approach comprises a microliter reservoir and a model cytoplasm that are separated by a synthetic membrane containing sub-micrometric pores through which small molecules and recombinant proteins can diffuse. We have used this system to examine the perturbation of elements of the mitotic spindle, which is a microtubule-based bipolar structure involved in the segregation of the replicated genome to daughter cells during cell division. First, we used the small molecule inhibitor monastrol to target kinesin-5, a molecular motor that maintains the microtubule spindle bipolarity. Next, we explored the dynamics of the mitotic spindle by monitoring the exchange between unpolymerized and polymerized tubulin within microtubule fibers. These results show that a simple diffusion-based system can generate biochemical perturbations directly within a cell-free cytoplasm based on Xenopus egg extracts at the time scale of minutes. Our assay is therefore suitable for monitoring the dynamics of supramolecular assemblies within cell-free extracts in response to perturbations. This strategy opens up broad perspectives including phenotype screening or mechanistic studies of biological assembly processes and could be applied to other cell-free extracts such as those derived from mammalian or bacterial cells.

20.
Nat Commun ; 6: 8639, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26478194

RESUMO

The phase transition of crystalline ordering is a general phenomenon, but its evolution in space and time requires microscopic probes for visualization. Here we report direct imaging of the transformation of amorphous titanium dioxide nanofilm, from the liquid state, passing through the nucleation step and finally to the ordered crystal phase. Single-pulse transient diffraction profiles at different times provide the structural transformation and the specific degree of crystallinity (η) in the evolution process. It is found that the temporal behaviour of η exhibits unique 'two-step' dynamics, with a robust 'plateau' that extends over a microsecond; the rate constants vary by two orders of magnitude. Such behaviour reflects the presence of intermediate structure(s) that are the precursor of the ordered crystal state. Theoretically, we extend the well-known Johnson-Mehl-Avrami-Kolmogorov equation, which describes the isothermal process with a stretched-exponential function, but here over the range of times covering the melt-to-crystal transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA