Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Biochem Biophys Res Commun ; 727: 150311, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38950494

RESUMO

In human Alzheimer's disease (AD), the aggregation of tau protein is considered a significant hallmark, along with amyloid-beta. The formation of neurofibrillary tangles due to aberrant phosphorylation of tau disrupts microtubule stability, leading to neuronal toxicity, dysfunction, and subsequent cell death. Nesfatin-1 is a neuropeptide primarily known for regulating appetite and energy homeostasis. However, the function of Nesfatin-1 in a neuroprotective role has not been investigated. In this study, we aimed to elucidate the effect of Nesfatin-1 on tau pathology using the Drosophila model system. Our findings demonstrate that Nesfatin-1 effectively mitigates the pathological phenotypes observed in Drosophila human Tau overexpression models. Nesfatin-1 overexpression rescued the neurodegenerative phenotypes in the adult fly's eye and bristle. Additionally, Nesfatin-1 improved locomotive behavior, neuromuscular junction formation, and lifespan in the hTau AD model. Moreover, Nesfatin-1 controls tauopathy by reducing the protein level of hTau. Overall, this research highlights the potential therapeutic applications of Nesfatin-1 in ameliorating the pathological features associated with Alzheimer's disease.

2.
Chemistry ; : e202400826, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818667

RESUMO

The pursuit of energy-saving materials and technologies has garnered significant attention for their pivotal role in mitigating both energy consumption and carbon emissions. In particular, thermochromic windows in buildings offer energy-saving potential by adjusting the transmittance of solar irradiation in response to temperature changes. Radiative cooling (RC), radiating thermal heat from an object surface to the cold outer space, also offers a potential way for cooling without energy consumption. Accordingly, smart window and RC technologies based on thermochromic materials can play a crucial role in improving energy efficiency and reducing energy consumption in buildings in response to the surrounding temperature. Vanadium dioxide (VO2) is a promising thermochromic material for energy-saving smart windows and RC due to its reversible metal-to-insulator transition, accompanying large changes in its optical properties. This review provides a brief summary of synthesis methods of VO2 nanostructures based on nanoparticles and thin films. Moreover, this review emphasizes and summarizes modulation strategies focusing on doping, thermal processing, and structure manipulation to improve and regulate the thermochromic and emissivity performance of VO2 for smart window and RC applications. In last, the challenges and recent advances of VO2-based smart window and RC applications are briefly presented.

3.
Sensors (Basel) ; 23(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37571499

RESUMO

Vanadium dioxide (VO2) is one of the strongly correlated materials exhibiting a reversible insulator-metal phase transition accompanied by a structural transition from a low-temperature monoclinic phase to high-temperature rutile phase near room temperature. Due to the dramatic change in electrical resistance and optical transmittance of VO2, it has attracted considerable attention towards the electronic and optical device applications, such as switching devices, memory devices, memristors, smart windows, sensors, actuators, etc. The present review provides an overview of several methods for the synthesis of nanostructured VO2, such as solution-based chemical approaches (sol-gel process and hydrothermal synthesis) and gas or vapor phase synthesis techniques (pulsed laser deposition, sputtering method, and chemical vapor deposition). This review also presents stoichiometry, strain, and doping engineering as modulation strategies of physical properties for nanostructured VO2. In particular, this review describes ultraviolet-visible-near infrared photodetectors, optical switches, and color modulators as optical sensing applications associated with nanostructured VO2 materials. Finally, current research trends and perspectives are also discussed.

4.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576050

RESUMO

Intracerebral hemorrhage (ICH) occurs when brain blood vessels rupture, causing inflammation and cell death. 2-Fucosyllactose (2FL), a human milk oligosaccharide, has potent antiapoptotic and anti-inflammatory effects. The purpose of this study was to examine the protective effect of 2FL in cellular and rodent models of ICH. Hemin was added to a primary rat cortical neuronal and BV2 microglia coculture to simulate ICH in vitro. IBA1 and MAP2 immunoreactivities were used to determine inflammation and neuronal survival. Hemin significantly increased IBA1, while it reduced MAP2 immunoreactivity. 2FL significantly antagonized both responses. The protective effect of 2FL was next examined in a rat ICH model. Intracerebral administration of type VII collagenase reduced open-field locomotor activity. Early post-treatment with 2FL significantly improved locomotor activity. Brain tissues were collected for immunohistochemistry and qRT-PCR analysis. 2FL reduced IBA1 and CD4 immunoreactivity in the lesioned striatum. 2FL downregulated the expression of ER stress markers (PERK and CHOP), while it upregulated M2 macrophage markers (CD206 and TGFß) in the lesioned brain. Taken together, our data support that 2FL has a neuroprotective effect against ICH through the inhibition of neuroinflammation and ER stress. 2FL may have clinical implications for the treatment of ICH.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Acidente Vascular Cerebral Hemorrágico/tratamento farmacológico , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/genética , Trissacarídeos/farmacologia , Animais , Linhagem Celular , Técnicas de Cocultura , Colagenases/toxicidade , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hemina/toxicidade , Acidente Vascular Cerebral Hemorrágico/induzido quimicamente , Acidente Vascular Cerebral Hemorrágico/genética , Acidente Vascular Cerebral Hemorrágico/patologia , Humanos , Locomoção/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/patologia , Leite Humano/química , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Ratos , Trissacarídeos/química
5.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830073

RESUMO

In this work, we develop a Ag@Al2O3@Ag plasmonic core-shell-satellite (PCSS) to achieve highly sensitive and reproducible surface-enhanced Raman spectroscopy (SERS) detection of probe molecules. To fabricate PCSS nanostructures, we employ a simple hierarchical dewetting process of Ag films coupled with an atomic layer deposition (ALD) method for the Al2O3 shell. Compared to bare Ag nanoparticles, several advantages of fabricating PCSS nanostructures are discovered, including high surface roughness, high density of nanogaps between Ag core and Ag satellites, and nanogaps between adjacent Ag satellites. Finite-difference time-domain (FDTD) simulations of the PCSS nanostructure confirm an enhancement in the electromagnetic field intensity (hotspots) in the nanogap between the Ag core and the satellite generated by the Al2O3 shell, due to the strong core-satellite plasmonic coupling. The as-prepared PCSS-based SERS substrate demonstrates an enhancement factor (EF) of 1.7 × 107 and relative standard deviation (RSD) of ~7%, endowing our SERS platform with highly sensitive and reproducible detection of R6G molecules. We think that this method provides a simple approach for the fabrication of PCSS by a solid-state technique and a basis for developing a highly SERS-active substrate for practical applications.


Assuntos
Óxido de Alumínio/química , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman
6.
Nanotechnology ; 31(22): 225205, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32053801

RESUMO

A technique for directly growing two-dimensional (2D) materials onto conventional semiconductor substrates, enabling high-throughput and large-area capability, is required to realise competitive 2D transition metal dichalcogenide devices. A reactive sputtering method based on H2S gas molecules and sequential in situ post-annealing treatment in the same chamber was proposed to compensate for the relatively deficient sulfur atoms in the sputtering of MoS2 and then applied to a 2D MoS2/p-Si heterojunction photodevice. X-ray photoelectron, Raman, and UV-visible spectroscopy analysis of the as-deposited Ar/H2S MoS2 film were performed, indicating that the stoichiometry and quality of the as-deposited MoS2 can be further improved compared with the Ar-only MoS2 sputtering method. For example, Ar/H2S MoS2 photodiode has lower defect densities than that of Ar MoS2. We also determined that the factors affecting photodetector performance can be optimised in the 8-12 nm deposited thickness range.

7.
Nano Lett ; 19(9): 6338-6345, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31356089

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructures have been proposed as potential candidates for a variety of applications like quantum computing, neuromorphic computing, solar cells, and flexible field effective transistors. The 2D TMDC heterostructures at the present stage face difficulties being implemented in these applications because of lack of large and sharp heterostructure interfaces. Herein, we address this problem via a CVD technique to grow thermodynamically stable heterostructure of 2H/1T' MoSe2-ReSe2 using conventional transition metal phase diagrams as a reference. We demonstrate how the thermodynamics of mixing in the MoReSe2 system during CVD growth dictates the formation of atomically sharp interfaces between MoSe2 and ReSe2, which can be confirmed by high-resolution scanning transmission electron microscopy imaging, revealing zigzag selenium-terminated interface between the epitaxial 2H and 1T' lattices. Our work provides useful insights for understanding the stability of 2D heterostructures and interfaces between chemically, structurally, and electronically different phases.

8.
Nanotechnology ; 26(12): 125202, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25736097

RESUMO

We investigated the effects of hydrogen plasma treatment on the electrical transport properties of ZnO nanowire field effect transistors (FETs) with a back gate configuration. After hydrogen plasma treatment of the FET devices, the effective carrier density and mobility of the nanowire FETs increased with a threshold voltage shift toward a negative gate bias direction. This can be attributed to the desorption of oxygen molecules adsorbed on the surface of the nanowire channel, to passivation and to doping effects due to the incorporation of energetic hydrogen ions generated in plasma.

9.
Sensors (Basel) ; 15(10): 24903-13, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404279

RESUMO

We have investigated the effects of metal decoration on the gas-sensing properties of a device with two-dimensional (2D) molybdenum disulfide (MoS2) flake channels and graphene electrodes. The 2D hybrid-structure device sensitively detected NO2 gas molecules (>1.2 ppm) as well as NH3 (>10 ppm). Metal nanoparticles (NPs) could tune the electronic properties of the 2D graphene/MoS2 device, increasing sensitivity to a specific gas molecule. For instance, palladium NPs accumulate hole carriers of graphene/MoS2, electronically sensitizing NH3 gas molecules. Contrarily, aluminum NPs deplete hole carriers, enhancing NO2 sensitivity. The synergistic combination of metal NPs and 2D hybrid layers could be also applied to a flexible gas sensor. There was no serious degradation in the sensing performance of metal-decorated MoS2 flexible devices before/after 5000 bending cycles. Thus, highly sensitive and endurable gas sensor could be achieved through the metal-decorated 2D hybrid-structure, offering a useful route to wearable electronic sensing platforms.

10.
J Nanosci Nanotechnol ; 14(7): 4982-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24757970

RESUMO

We present our investigation results on the origin of the morphological defects on graphene films synthesized by chemical vapor deposition method on nickel catalytic substrates. These defects are small-base-area (SBA) peaks with tens of nanometer heights, and they diminish the applicability of graphene films. From atomic force microscopy observations on the graphene films prepared in various ways, we found that significant portion of the SBA peaks is formed in the crevices on the nickel substrates. Our results may be useful for developing an efficient synthesis method to produce high-quality graphene films without the SBA peaks.

11.
Nano Lett ; 13(4): 1822-8, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23458034

RESUMO

We report a morphotropic phase transformation in vanadium dioxide (VO2) nanobeams annealed in a high-pressure hydrogen gas, which leads to the stabilization of metallic phases. Structural analyses show that the annealed VO2 nanobeams are hexagonal-close-packed structures with roughened surfaces at room temperature, unlike as-grown VO2 nanobeams with the monoclinic structure and with clean surfaces. Quantitative chemical examination reveals that the hydrogen significantly reduces oxygen in the nanobeams with characteristic nonlinear reduction kinetics which depend on the annealing time. Surprisingly, the work function and the electrical resistance of the reduced nanobeams follow a similar trend to the compositional variation due mainly to the oxygen-deficiency-related defects formed at the roughened surfaces. The electronic transport characteristics indicate that the reduced nanobeams are metallic over a large range of temperatures (room temperature to 383 K). Our results demonstrate the interplay between oxygen deficiency and structural/electronic phase transitions, with implications for engineering electronic properties in vanadium oxide systems.


Assuntos
Hidrogênio/química , Nanopartículas/química , Óxidos/química , Transição de Fase , Compostos de Vanádio/química , Cristalização , Condutividade Elétrica , Propriedades de Superfície
12.
Geriatr Gerontol Int ; 24(5): 486-492, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509017

RESUMO

AIM: We examined the novel role of NUCB1(Nucleobindin-1) associated with longevity in Drosophila melanogaster. METHODS: We measured the lifespan, metabolic phenotypes, and mRNA levels of Drosophila insulin-like peptides (Dilps), the protein level of phosphorylated AKT, and the localization of FOXO and its target gene expressions in the NUCB1 knockdown condition. RESULTS: NUCB1 knockdown flies show an extended lifespan and metabolic phenotypes such as increased circulating glucose level and starvation resistance. The mRNA expression levels of Dilps and the protein level of phosphorylated AKT, a downstream component of insulin signaling, were decreased in NUCB1 knockdown flies compared with the control flies. Also, the nuclear localization of FOXO and its target gene expressions, such as d4E-BP and InR, were elevated. CONCLUSIONS: The results show that NUCB1 knockdown flies exhibits an extended lifespan. These findings suggest that NUCB1 modulates longevity through insulin signaling in Drosophila. Geriatr Gerontol Int 2024; 24: 486-492.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Insulina , Longevidade , Transdução de Sinais , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Técnicas de Silenciamento de Genes , Insulina/metabolismo , Longevidade/fisiologia , Longevidade/genética , Transdução de Sinais/fisiologia
13.
Biotechnol J ; 19(1): e2300461, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37968827

RESUMO

2'-Fucosyllactose (2'-FL) which is well-known human milk oligosaccharide was biotechnologically synthesized using engineered Corynebacterium glutamicum, a GRAS microbial workhorse. By construction of the complete de novo pathway for GDP-L-fucose supply and heterologous expression of Escherichia coli lactose permease and Helicobacter pylori α-1,2-fucosyltransferase, bioengineered C. glutamicum BCGW_TL successfully biosynthesized 0.25 g L-1 2'-FL from glucose. The additional genetic perturbations including the expression of a putative 2'-FL exporter and disruption of the chromosomal pfkA gene allowed C. glutamicum BCGW_cTTLEΔP to produce 2.5 g L-1 2'-FL batchwise. Finally, optimized fed-batch cultivation of the BCGW_cTTLEΔP using glucose, fructose, and lactose resulted in 21.5 g L-1 2'-FL production with a productivity of 0.12 g L-1 •h, which were more than 3.3 times higher value relative to the batch culture of the BCGW_TL. Conclusively, it would be a groundwork to adopt C. glutamicum for biotechnological production of other food additives including human milk oligosaccharides.


Assuntos
Corynebacterium glutamicum , Humanos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Trissacarídeos/genética , Trissacarídeos/metabolismo , Oligossacarídeos/metabolismo , Escherichia coli/genética , Guanosina Difosfato Fucose/genética , Guanosina Difosfato Fucose/metabolismo , Glucose/metabolismo , Engenharia Metabólica
14.
Int J Antimicrob Agents ; 64(1): 107187, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697577

RESUMO

Viral pathogens, particularly influenza and SARS-CoV-2, pose a significant global health challenge. Given the immunomodulatory properties of human milk oligosaccharides, in particular 2'-fucosyllactose and 3-fucosyllactose (3-FL), we investigated their dietary supplementation effects on antiviral responses in mouse models. This study revealed distinct immune modulations induced by 3-FL. RNA-sequencing data showed that 3-FL increased the expression of interferon receptors, such as Interferon Alpha and Beta Receptor (IFNAR) and Interferon Gamma Receptor (IFNGR), while simultaneously downregulating interferons and interferon-stimulated genes, an effect not observed with 2'-fucosyllactose supplementation. Such modulation enhanced antiviral responses in both cell culture and animal models while attenuating pre-emptive inflammatory responses. Nitric oxide concentrations in 3-FL-supplemented A549 cells and mouse lung tissues were elevated exclusively upon infection, reaching 5.8- and 1.9-fold increases over control groups, respectively. In addition, 3-FL promoted leukocyte infiltration into the site of infection upon viral challenge. 3-FL supplementation provided protective efficacy against lethal influenza challenge in mice. The demonstrated antiviral efficacy spanned multiple influenza strains and extended to SARS-CoV-2. In conclusion, 3-FL is a unique immunomodulator that helps protect the host from viral infection while suppressing inflammation prior to infection.


Assuntos
Trissacarídeos , Animais , Camundongos , Humanos , Trissacarídeos/farmacologia , Trissacarídeos/imunologia , Células A549 , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Feminino , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/imunologia , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Suplementos Nutricionais , Óxido Nítrico/metabolismo , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/virologia , Oligossacarídeos
15.
Small ; 9(19): 3295-300, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23420782

RESUMO

A highly flexible and transparent transistor is developed based on an exfoliated MoS2 channel and CVD-grown graphene source/drain electrodes. Introducing the 2D nanomaterials provides a high mechanical flexibility, optical transmittance (∼74%), and current on/off ratio (>10(4)) with an average field effect mobility of ∼4.7 cm(2) V(-1) s(-1), all of which cannot be achieved by other transistors consisting of a MoS2 active channel/metal electrodes or graphene channel/graphene electrodes. In particular, a low Schottky barrier (∼22 meV) forms at the MoS2 /graphene interface, which is comparable to the MoS2 /metal interface. The high stability in electronic performance of the devices upon bending up to ±2.2 mm in compressive and tensile modes, and the ability to recover electrical properties after degradation upon annealing, reveal the efficacy of using 2D materials for creating highly flexible and transparent devices.

16.
Nanotechnology ; 24(45): 455703, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24140605

RESUMO

We investigate strain-induced optical modulation in a ZnO microwire with wavy geometries induced by mechanical strains. Curved sections of the wavy ZnO microwire show red-/blue-shifts of near-band-edge emission and broadening of full width at half maximum in cathodoluminescence spectra along the length of the wavy ZnO microwire, compared with straight sections. The observed variations indicate that local strains in the wavy ZnO microwire lead to strain-dependent local changes of its energy band structure. The local bending curvature calculations using a geometric model also provide correlation between the shift of the near-band-edge emission peaks and the bending strain.

17.
Nanotechnology ; 24(34): 345701, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23900193

RESUMO

Using Raman spectroscopy, we demonstrated photothermally induced crystallographic phase transitions of vanadium dioxide (VO2) nanobeams clamped to and free-standing on a substrate. Compared to the temperature-dependent Raman measurements, the laser-power-dependent Raman characteristics provide substantial evidence for the photothermal origin of the phase transitions of the VO2 nanobeams. The laser power necessary to cause phase transitions in the free-standing nanobeam was approximately eight times smaller than the laser power used in the substrate-clamped nanobeam. Our study will enhance the understanding of the complex phase transitions of strongly correlated oxides and thereby provide a foundation for engineering desirable properties in novel devices.

18.
ACS Appl Mater Interfaces ; 15(8): 11296-11303, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787543

RESUMO

We demonstrate the modulation of electrical switching properties through the interconnection of multiple nanoscale channels (∼600 nm) in a single VO2 nanobeam with a coexisting metal-insulator (M-I) domain configuration during phase transition. The Raman scattering characteristics of the synthesized VO2 nanobeams provide evidence that substrate-induced interfacial strain can be inhomogeneously distributed along the length of the nanobeam. Interestingly, the nanoscale VO2 devices with the same channel length and width exhibit distinct differences in hysteric current-voltage characteristics, which are explained by theoretical calculations of resistance change combined with Joule heating simulations of the nanoscale VO2 channels. The observed results can be attributed to the difference in the spatial distribution and fraction ratios of M-I domains due to interfacial strain in the nanoscale VO2 channels during the metal-insulator transition process. Moreover, we demonstrate the electrically activated resistive switching characteristics based on the hysteresis behaviors of the interconnected nanoscale channels, implying the possibility of manipulating multiple resistive states. Our results may offer insights into the nanoscale engineering of correlated phases in VO2 as the key materials of neuromorphic computing for which nonlinear conductance is essential.

19.
Nutrients ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37111064

RESUMO

Ulcerative colitis is an inflammatory bowel disease (IBD) with relapsing and remitting patterns, and it is caused by varied factors, such as the intestinal inflammation extent and duration. We examined the preventative effects of human milk oligosaccharides (HMOs) on epithelial barrier integrity and intestinal inflammation in an interleukin (IL)-6-induced cell model and dextran sodium sulfate (DSS)-induced acute mouse colitis model. HMOs including 2'-fucosyllactose (FL) and 3-FL and positive controls including fructooligosaccharide (FOS) and 5-acetylsalicylic acid (5-ASA) were orally administrated once per day to C57BL/6J mice with colitis induced by 5% DSS in the administered drinking water. 2'-FL and 3-FL did not affect the cell viability in Caco-2 cells. Meanwhile, these agents reversed IL-6-reduced intestinal barrier function in Caco-2 cells. Furthermore, 2'-FL and 3-FL reversed the body weight loss and the remarkably short colon lengths in DSS-induced acute colitis mice. Moreover, 2'-FL and 3-FL obviously protected the decreasing expression of zonula occluden-1 and occludin in colon tissue relative to the findings in the DSS-treated control group. 2'-FL and 3-FL significantly reduced IL-6 and tumor necrosis factor-α levels in serum relative to the control findings. The summary of these results shows that HMOs prevent colitis mainly by enhancing intestinal barrier function and advancing anti-inflammatory responses. Therefore, HMOs might suppress inflammatory responses and represent candidate treatments for IBD that protect intestinal integrity.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Interleucina-6/metabolismo , Dextranos/efeitos adversos , Células CACO-2 , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/metabolismo , Colo/metabolismo , Oligossacarídeos/efeitos adversos , Inflamação/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo
20.
Antioxidants (Basel) ; 12(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37372011

RESUMO

Cerebral ischemic stroke is one of the leading causes of death and disability worldwide. 2'-fucosyllactose (2'-FL), a human milk oligosaccharide, exerts anti-inflammatory effects and plays a protective role in arterial thrombosis; however, its role in ischemic stroke remains unclear. This study aimed to investigate the neuroprotective effects of 2'-FL and its potential mechanisms in a mouse model of ischemic stroke. Neurological score and behavior tests revealed that 2'-FL promoted the recovery of neurological deficits and motor function in middle cerebral artery occlusion (MCAO) mice, and that 2'FL led to a reduction in the size of cerebral infarct. Biochemical studies showed that administration of 2'-FL led to a reduction of reactive oxygen species (ROS)-related products in the brain of MCAO mice. 2'-FL upregulated IL-10 and downregulated TNF-α level. In addition, 2'-FL enhanced M2-type microglial polarization and upregulated CD206 expression at 7 days after MCAO. At 3 days after MCAO, 2'-FL increased IL-4 levels and activated STAT6. Our data show that 2'-FL reduced the neurological symptoms of ischemic stroke and ROS accumulation in the brain through IL-4/STAT6-dependent M2-type microglial polarization in MCAO mice. These results demonstrate that 2'-FL is a potentially effective therapeutic agent for ischemic stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA