RESUMO
Green fuel from water splitting is hardcore for future generations, and the limited source of fresh water (<1%) is a bottleneck. Seawater cannot be used directly as a feedstock in current electrolyzer techniques. Until now single atom catalysts were reported by many synthetic strategies using notorious chemicals and harsh conditions. A cobalt single-atom (CoSA) intruding cobalt oxide ultrasmall nanoparticle (Co3 O4 USNP)-intercalated porous carbon (PC) (CoSA-Co3 O4 @PC) electrocatalyst was synthesized from the waste orange peel as a single feedstock (solvent/template). The extended X-ray absorption fine structure spectroscopy (EXAFS) and theoretical fitting reveal a clear picture of the coordination environment of the CoSA sites (CoSA-Co3 O4 and CoSA-N4 in PC). To impede the direct seawater corrosion and chlorine evolution the seawater has been desalinated (Dseawater) with minimal cost and the obtained PC is used as an adsorbent in this process. CoSA-Co3 O4 @PC shows high oxygen evolution reaction (OER) activity in transitional metal impurity-free (TMIF) 1 M KOH and alkaline Dseawater. CoSA-Co3 O4 @PC exhibits mass activity that is 15 times higher than the commercial RuO2 . Theoretical interpretations suggest that the optimized CoSA sites in Co3 O4 USNPs reduce the energy barrier for alkaline water dissociation and simultaneously trigger an excellent OER followed by an adsorbate evolution mechanism (AEM).
RESUMO
Progress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals. Therefore, there have been limited opportunities to share the challenges, goals, and findings with most of the MOF field. In this review, we examine the issues and demands for MOF commercialization and investigate recent advances in MOF process engineering and applications. Specifically, we discuss the criteria for MOF commercialization from the views of stability, producibility, regulations, and production cost. This review covers progress in the mass production and formation of MOFs along with future applications that are not currently well known but have high potential for new areas of MOF commercialization.
RESUMO
The breathing phenomenon in metal-organic frameworks (MOFs) has revealed supramolecular host-guest interactions that could be beneficial for chemical separation in numerous industrial applications. The cost-effective purification of C8 alkyl aromatics such as o-xylene, m-xylene, p-xylene, and ethylbenzene remains challenging owing to their similar molecular structures, boiling points, kinetic diameters, polarities, etc. Herein, we report two Zn-based pillar-bilayered MOFs, denoted [Zn2 (aip)2 (pillar)] (aip=5-aminoisophthalic acid; pillar: bpy=4,4'-bipyridine or bpe=1,2-bis(4-pyridyl)ethane) that exhibit a breathing effect depending on the adsorbed guest molecules. Guest-dependent sorption studies in organic solvents such as N,N-dimethylformamide, methanol, benzene, and water vapor display reversible structural flexibility through the breathing effect in both framework compounds. The experiments conducted on C8 -alkyl aromatics resulting in both MOF compounds can access these isomers in the shrunken pores, and thereby expand the pore size by framework breathing. In C8 binary mixtures, these Zn-MOFs exhibit selective sorption properties based on the different interactions between guest C8 aromatics and the framework structure.
RESUMO
Invited for the cover of this issue are Purnaâ Chandraâ Rao, Minyoungâ Yoon and co-workers at Kyungpook National University, Gachon University, POSTECH, Korea Atomic Energy Research Institute and the University of Sydney. The image depicts how single C8 isomers are selectively isolated from a mixture. Read the full text of the article at 10.1002/chem.202102640.
RESUMO
Structural deformation and collapse in metal-organic frameworks (MOFs) can lead to loss of long-range order, making it a challenge to model these amorphous materials using conventional computational methods. In this work, we show that a structure-property map consisting of simulated data for crystalline MOFs can be used to indirectly obtain adsorption properties of structurally deformed MOFs. The structure-property map (with dimensions such as Henry coefficient, heat of adsorption, and pore volume) was constructed using a large data set of over 12000 crystalline MOFs from molecular simulations. By mapping the experimental data points of deformed SNU-200, MOF-5, and Ni-MOF-74 onto this structure-property map, we show that the experimentally deformed MOFs share similar adsorption properties with their nearest neighbor crystalline structures. Once the nearest neighbor crystalline MOFs for a deformed MOF are selected from a structure-property map at a specific condition, then the adsorption properties of these MOFs can be successfully transformed onto the degraded MOFs, leading to a new way to obtain properties of materials whose structural information is lost.
RESUMO
Deuterium has been recognized as an irreplaceable element in industrial and scientific research. However, hydrogen isotope separation still remains a huge challenge due to the identical physicochemical properties of the isotopes. In this paper, a partially fluorinated metal-organic framework (MOF) with copper, a so-called FMOFCu, was investigated to determine the separation efficiency and capacity of the framework for deuterium extraction from a hydrogen isotope mixture. The unique structure of this porous material consists of a trimodal pore system with large tubular cavities connected through a smaller cavity with bottleneck apertures with a size of 3.6 Å plus a third hidden cavity connected by an even smaller aperture of 2.5 Å. Depending on the temperature, these two apertures show a gate-opening effect and the cavities get successively accessible for hydrogen with increasing temperature. Thermal desorption spectroscopy (TDS) measurements indicate that the locally flexible MOF can separate D2 from anisotope mixture efficiently, with a selectivity of 14 at 25 K and 4 at 77 K.
RESUMO
The effect of metal on the degree of flexibility upon evacuation of metal-organic frameworks (MOFs) has been revealed with positional control of the organic functionalities. Although Co-, Cu-, and Zn-based DMOFs (DMOF = DABCO MOF, DABCO = 1,4-diazabicyclo[2.2.2]octane) with ortho-ligands (2,3-NH2 Cl) have frameworks that are inflexible upon evacuation, MOFs with para-ligands (2,5-NH2 Cl) showed different N2 uptake amounts after evacuation by metal exchange. Considering that the structural analyses were not fully sufficiently different to explain the drastic changes in N2 adsorption after evacuation, quantum chemical simulation was explored. A new index (η) was defined to quantify the regularity around the metal based on differences in the oxygen-metal-oxygen angles. Within 2,5-NH2 Cl, the η value becomes larger as the metal are varied from Co to Zn. A large η value means that the structures around the metal center are less ordered. These results can be used to explain flexibility changes upon evacuation by altering the metal cation in this regioisomeric system.
RESUMO
Salt toxicity is the major factor limiting crop productivity in saline soils. In this paper, 295 accessions including a heuristic core set (137 accessions) and 158 bred varieties were re-sequenced and ~1.65 million SNPs/indels were used to perform a genome-wide association study (GWAS) of salt-tolerance-related phenotypes in rice during the germination stage. A total of 12 associated peaks distributed on seven chromosomes using a compressed mixed linear model were detected. Determined by linkage disequilibrium (LD) blocks analysis, we finally obtained a total of 79 candidate genes. By detecting the highly associated variations located inside the genic region that overlapped with the results of LD block analysis, we characterized 17 genes that may contribute to salt tolerance during the seed germination stage. At the same time, we conducted a haplotype analysis of the genes with functional variations together with phenotypic correlation and orthologous sequence analyses. Among these genes, OsMADS31, which is a MADS-box family transcription factor, had a down-regulated expression under the salt condition and it was predicted to be involved in the salt tolerance at the rice germination stage. Our study revealed some novel candidate genes and their substantial natural variations in the rice genome at the germination stage. The GWAS in rice at the germination stage would provide important resources for molecular breeding and functional analysis of the salt tolerance during rice germination.
Assuntos
Estudo de Associação Genômica Ampla/métodos , Germinação , Proteínas de Domínio MADS/genética , Oryza/crescimento & desenvolvimento , Tolerância ao Sal , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNARESUMO
BACKGROUND: Rice germplasm collections continue to grow in number and size around the world. Since maintaining and screening such massive resources remains challenging, it is important to establish practical methods to manage them. A core collection, by definition, refers to a subset of the entire population that preserves the majority of genetic diversity, enhancing the efficiency of germplasm utilization. RESULTS: Here, we report whole-genome resequencing of the 137 rice mini core collection or Korean rice core set (KRICE_CORE) that represents 25,604 rice germplasms deposited in the Korean genebank of the Rural Development Administration (RDA). We implemented the Illumina HiSeq 2000 and 2500 platform to produce short reads and then assembled those with 9.8 depths using Nipponbare as a reference. Comparisons of the sequences with the reference genome yielded more than 15 million (M) single nucleotide polymorphisms (SNPs) and 1.3 M INDELs. Phylogenetic and population analyses using 2,046,529 high-quality SNPs successfully assigned rice accessions to the relevant rice subgroups, suggesting that these SNPs capture evolutionary signatures that have accumulated in rice subpopulations. Furthermore, genome-wide association studies (GWAS) for four exemplary agronomic traits in the KRIC_CORE manifest the utility of KRICE_CORE; that is, identifying previously defined genes or novel genetic factors that potentially regulate important phenotypes. CONCLUSION: This study provides strong evidence that the size of KRICE_CORE is small but contains high genetic and functional diversity across the genome. Thus, our resequencing results will be useful for future breeding, as well as functional and evolutionary studies, in the post-genomic era.
Assuntos
Cruzamento , Evolução Molecular , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica/métodos , Oryza/genética , Análise de Sequência de DNA , Variação Genética , Genética Populacional , Mutação INDEL , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Tocopherols and tocotrienols, collectively known as tocochromanols, are lipid-soluble molecules that belong to the group of vitamin E compounds. Among them, α-tocopherol (αΤ) is one of the antioxidants with diverse functions and benefits for humans and animals. Thus, understanding the genetic basis of these traits would be valuable to improve nutritional quality by breeding in rice. Genome-wide association study (GWAS) has emerged as a powerful strategy for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. To discover the genes or QTLs underlying the naturally occurring variations of αΤ content in rice, we performed GWAS using 1.44 million high-quality single-nucleotide polymorphisms acquired from re-sequencing of 137 accessions from a diverse rice core collection. Thirteen candidate genes were found across 2-year phenotypic data, among which gamma-tocopherol methyltransferase (OsγTMT) was identified as the major factor responsible for the αΤ content among rice accessions. Nucleotide variations in the coding region of OsγTMT were significantly associated with the αΤ content variations, while nucleotide polymorphisms in the promoter region of OsγTMT also could partly demonstrate the correlation with αΤ content variations, according to our RNA expression analyses. This study provides useful information for genetic factors underlying αΤ content variations in rice, which will significantly contribute the research on αΤ biosynthesis mechanisms and αΤ improvement of rice.
Assuntos
Genes de Plantas , Variação Genética , Oryza/metabolismo , alfa-Tocoferol/metabolismo , Estudo de Associação Genômica Ampla , Oryza/genéticaRESUMO
A thiophene-derived Schiff base ligand (E)-2-morpholino-N-(thiophen-2-ylmethylene)ethanamine was used for the synthesis of M(II) complexes, [TEM(M)X2] (M = Co, Cu, Zn; X = Cl; M = Cd, X = Br). Structural characterization of the synthesized complexes revealed distorted tetrahedral geometry around the M(II) center. In vitro investigation of the synthesized ligand and its M(II) complexes showed considerable anti-urease and leishmanicidal potential. The synthesized complexes also exhibited a significant inhibitory effect on urease, with IC50 values in the range of 3.50-8.05 µM. In addition, the docking results were consistent with the experimental results. A preliminary study of human colorectal cancer (HCT), hepatic cancer (HepG2), and breast cancer (MCF-7) cell lines showed marked anticancer activities of these complexes.
Assuntos
Antineoplásicos , Complexos de Coordenação , Simulação de Acoplamento Molecular , Bases de Schiff , Tiofenos , Urease , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Urease/antagonistas & inibidores , Urease/metabolismo , Tiofenos/química , Tiofenos/farmacologia , Tiofenos/síntese química , Bases de Schiff/química , Bases de Schiff/farmacologia , Bases de Schiff/síntese química , Morfolinas/química , Morfolinas/farmacologia , Morfolinas/síntese química , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Leishmania/efeitos dos fármacos , Relação Estrutura-Atividade , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Ensaios de Seleção de Medicamentos AntitumoraisRESUMO
A new mononuclear dysprosium(III)-cucurbit[6]uril complex has been synthesized and characterized structurally and magnetically. It exhibits single-ion magnet (SIM) behavior with two slow magnetic relaxation processes, which are very sensitive to the solvation degree of the sample. Depending on the amount and type of the solvent in the structure, it is possible to switch the slow magnetic relaxation of this compound between the temperature-independent and temperature-dependent regimes.
RESUMO
In the title salt, C17H19N4 (+)·PF6 (-), the two pyridine rings of the cation are inclined to one another by 15.89â (8)°, and inclined to the imidazole ring by 65.05â (10) and 64.07â (10)°. In the crystal, the cations and anions are linked via a series of C-Hâ¯N and C-Hâ¯F hydrogen bonds, forming two-dimensional networks lying parallel to (001).
RESUMO
Proton-conducting materials are an important component of fuel cells. Development of new types of proton-conducting materials is one of the most important issues in fuel-cell technology. Herein, we present newly developed proton-conducting materials, modularly built porous solids, including coordination polymers (CPs) or metal-organic frameworks (MOFs). The designable and tunable nature of the porous materials allows for fast development in this research field. Design and synthesis of the new types of proton-conducting materials and their unique proton-conduction properties are discussed.
RESUMO
In urban areas, a major source of harmful particulate matter is generated by vehicles. In particular, bus stops, where people often stay for public transportation, generate high concentrations of particulate matter compared to the general atmosphere. In this study, a non-powered type brush filter that generates electrostatic force without using a separate power source was developed to manage the concentration of particulate matter exposed at bus stops, and the removal performance of particulate matter was evaluated. The dust collection performance of the non-motorized brush filter varied by material, with particle removal efficiencies of 82.1 ± 3.4, 76.1 ± 4.7, and 73.7 ± 4.5% for horse hair, nylon, and stainless steel, respectively. In conditions without the fan running to see the effect of airflow, the particle removal efficiency was relatively low at 58.2 ± 8.4, 53.6 ± 9.2, and 58.0 ± 7.3%. Then, to check the dust collection performance according to the density, the number of brushes was increased to densify the density, and the horse hair, nylon, and stainless steel brush filters showed a maximum dust collection performance of 89.6 ± 2.2, 88.3 ± 3.2, and 82.1 ± 3.8%, respectively. To determine the replacement cycle of the non-powered brush filter, the particulate removal performance was initially 88.0 ± 3.2% when five horse hair brushes were used. Over time, particulate matter tended to gradually decrease, but after a period of time, particulate matter tended to increase again. The purpose of this study is to evaluate the particulate matter removal performance using a brush filter that generates electrostatic force without a separate power source. This study's brush filter is expected to solve the maintenance problems caused by the purchase and frequent replacement of expensive HEPA filters that occur with existing abatement devices, and the ozone problems caused by abatement devices that use high voltages.
RESUMO
Here, we report a series of four novel Cu complexes, namely 2-(piperidin-1-ylmethyl)quinoline copper(II) nitrate, [LACu(NO3)2] (Cu1), 4-(quinolin-2-ylmethyl)morpholine copper(II) nitrate, [LBCu(NO3)2] (Cu2), 4-(quinolin-2-ylmethyl)morpholine copper(II) chloride, [LBCuCl2] (Cu3), and 2-(piperidin-1-ylmethyl)pyridine copper(II) chloride, [LCCu(µ-Cl)Cl]2 (Cu4). X-ray diffraction studies revealed that the geometry around the Cu(II) center could be best described as distorted octahedral in Cu1 and Cu2, whereas Cu3 and Cu4 showed distorted tetrahedral and square pyramidal geometries, respectively. DNA binding studies showed that Cu complexes Cu1-3 containing quinoline interacted via minor groove binding, whereas the Cu4 complex containing pyridine interacted via intercalation. All Cu complexes containing quinoline and pyridine caused destabilization of DNA at specific homogeneous G-C regions. The Cu1-3 complexes as groove binders destabilized the DNA structure much more than the Cu4 complex as an intercalator. Regarding groove binders, the Cu2 complex containing quinoline and morpholine caused the highest distortion and destabilization of the DNA structure, leading to high DNA cleavage efficiency.
Assuntos
Cobre , Quinolinas , Cobre/química , DNA/química , Desoxirribonucleases , Piridinas , Morfolinas , Cristalografia por Raios XRESUMO
Zn(II), Pd(II), and Cd(II) complexes, [L TH MCl 2 ] (M = Zn, Pd; X = Br, Cl) and [L TH Cd(µ-X)X] n (X = Cl, Br; n = n, 2), supported by the (E)-N 1,N 1-dimethyl-N 2-(thiophen-2-ylmethylene)ethane-1,2-diamine (L TH ) ligand are synthesized and structurally characterized. Density functional theory (DFT) electronic structure calculations and variable-temperature NMR support the presence of two conformers and a dynamic interconversion process of the minor conformer to the major one in solution. It is found that the existence of two relevant complex conformers and their respective ratios in solution depend on the central metal ions and counter ions, either Cl- or Br-. Among the two relevant conformers, a single conformer is crystallized and X-ray diffraction analysis revealed a distorted tetrahedral geometry for Zn(II) complexes, and a distorted square planar and square pyramidal geometry for Pd(II) and Cd(II) complexes, respectively. It is shown that [L TH MCl 2 ]/LiO i Pr (M = Zn, Pd) and [L TH Cd(µ-Cl)Cl] n /LiO i Pr can effectively catalyze the ring-opening polymerization (ROP) reaction of rac-lactide (rac-LA) with 94% conversion within 30 s with [L TH ZnCl 2 ]/LiO i Pr at 0 °C. Overall, hetero-enriched poly(lactic acid)s (PLAs) were provided by these catalytic systems with [L TH ZnCl 2 ]/LiO i Pr producing PLA with higher heterotactic bias (P r up to 0.74 at 0 °C).
RESUMO
A porous metal-organic framework, Mn(H(3)O)[(Mn(4)Cl)(3)(hmtt)(8)] (POST-65), was prepared by the reaction of 5,5',10,10',15,15'-hexamethyltruxene-2,7,12-tricarboxylic acid (H(3)hmtt) with MnCl(2) under solvothermal conditions. POST-65(Mn) was subjected to post-synthetic modification with Fe, Co, Ni, and Cu according to an ion-exchange method that resulted in the formation of three isomorphous frameworks, POST-65(Co/Ni/Cu), as well as a new framework, POST-65(Fe). The ion-exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma-atomic emission spectrometry (ICP-AES), powder X-ray diffraction (PXRD), and Brunauer-Emmett-Teller (BET) surface-area analysis. Single-crystal X-ray diffractions studies revealed a single-crystal-to-single-crystal (SCSC)-transformation nature of the ion-exchange process. Hydrogen-sorption and magnetization measurements showed metal-specific properties of POST-65.
Assuntos
Metais Pesados/química , Compostos Organometálicos , Ácidos Tricarboxílicos/química , Cristalografia por Raios X , Troca Iônica , Fenômenos Magnéticos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Propriedades de SuperfícieRESUMO
The light harvesting efficiency of dye-sensitized solar cells was enhanced by using a scattering layer. Such as sphere type TiO2, inverse photonic crystal TiO2, hollow spherical TiO2. Among these materials, the TiO2 with inverse photonic crystal (IPC) structure, synthesized by self-assembly using spherical templates, has attracted much attention due to their photonic crystal characteristics and light scattering effects. However, when applied in the DSSCs, the surface area of IPC is very low that caused insufficient adsorption amount of dye molecules. In the present work, a scattering layer with mesoporous inverse photonic crystal (MIPC) TiO2 film was fabricated by the sol-gel reactions with surfactant-assisted sol-gel method using poly(methyl methacrylate) as the template and titanium (IV) isopropoxide as the TiO2 precursor. After removing the PMMA and surfactant, a highly ordered macroporous structure with mesopores were successfully obtained. The surface area and total pore volume of the MIPC were 82 m2/g and 0.31 cm3/g, respectively, which is much larger than those of the IPC. The DSSCs with the scattering layer of MIPC film exhibited 18 and 10% higher photo-conversion efficiency than those of cells only with a nano-crystalline TiO2 film and with scattering layer of IPC film. From UV-visible spectra of dye solutions, the MIPC film showed a higher amount of absorbed dye molecules than those of the reference and IPC films. Accordingly, an increase in the photo-current density through abundant adsorption of the dye, coupled with inherent light scattering ability can improve overall photo-conversion efficiency.
Assuntos
Corantes/química , Fontes de Energia Elétrica , Membranas Artificiais , Nanoestruturas/química , Energia Solar , Titânio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Porosidade , Espalhamento de RadiaçãoRESUMO
In the field of nanotechnology, nanoadsorbents have emerged as a powerful tool for the purification of contaminated aqueous environments. Among the variety of nanoadsorbents developed so far, magnetite (Fe3O4) nanoparticles have drawn particular interest because of their quick separation, low cost, flexibility, reproducibility, and environmentally benign nature. Herein, we describe a new strategy for the synthesis of Fe3O4 nanoclusters, which is based on the use of naturally available edible mushrooms (Pleurotus eryngii) and environmentally benign propylene glycol as a solvent medium. By tuning the temperature, we successfully convert Fe3O4 nanoparticles into Fe3O4 nanoclusters via hydrothermal treatment, as evidenced by transmission electron microscopy. The Fe3O4 nanoclusters are functionalized with an organic molecule linker (dihydrolipoic acid, DHLA) to remove hazardous Hg(II) ions selectively. Batch adsorption experiments demonstrate that Hg(II) ions are strongly adsorbed on the material surface, and X-ray photoelectron and Fourier transform infrared spectroscopy techniques reveal the Hg(II) removal mechanism. The DHLA@Fe3O4 nanoclusters show a high removal efficiency of 99.2 % with a maximum Hg(II) removal capacity of 140.84 mg g-1. A kinetic study shows that the adsorption equilibrium is rapidly reached within 60 min and follows a pseudo second-order kinetic model. The adsorption and separation system can be readily recycled using an external magnet when the separation occurs within 10 s. We have studied the effect of various factors on the adsorption process, including pH, concentration, dosage, and temperature. The newly synthesized superparamagnetic DHLA@Fe3O4 nanoclusters open a new path for further development of the medical, catalysis, and environmental fields.