Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Immunology ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934051

RESUMO

Maintaining intracellular redox balance is essential for the survival, antibody secretion, and mucosal immune homeostasis of immunoglobulin A (IgA) antibody-secreting cells (ASCs). However, the relationship between mitochondrial metabolic enzymes and the redox balance in ASCs has yet to be comprehensively studied. Our study unveils the pivotal role of mitochondrial enzyme PCK2 in regulating ASCs' redox balance and intestinal homeostasis. We discover that PCK2 loss, whether globally or in B cells, exacerbates dextran sodium sulphate (DSS)-induced colitis due to increased IgA ASC cell death and diminished antibody production. Mechanistically, the absence of PCK2 diverts glutamine into the TCA cycle, leading to heightened TCA flux and excessive mitochondrial reactive oxygen species (mtROS) production. In addition, PCK2 loss reduces glutamine availability for glutathione (GSH) synthesis, resulting in a decrease of total glutathione level. The elevated mtROS and reduced GSH expose ASCs to overwhelming oxidative stress, culminating in cell apoptosis. Crucially, we found that the mitochondria-targeted antioxidant Mitoquinone (Mito-Q) can mitigate the detrimental effects of PCK2 deficiency in IgA ASCs, thereby alleviating colitis in mice. Our findings highlight PCK2 as a key player in IgA ASC survival and provide a potential new target for colitis treatment.

2.
Opt Express ; 32(7): 11259-11270, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570977

RESUMO

Photonic topological insulators with topologically protected edge states featuring one-way, robustness and backscattering-immunity possess extraordinary abilities to steer and manipulate light. In this work, we construct a topological heterostructure (TH) consisting of a domain of nontrivial pseudospin-type topological photonic crystals (PCs) sandwiched between two domains of trivial PCs based on two-dimensional all-dielectric core-shell PCs in triangle lattice. We consider three THs with different number of layers in the middle nontrivial domain (i.e., one-layer, two-layer, three-layer) and demonstrate that the projected band diagrams of the three THs host interesting topological waveguide states (TWSs) with properties of one-way, large-area, broad-bandwidth and robustness due to coupling effect of the helical edge states associated with the two domain-wall interfaces. Moreover, taking advantage of the tunable bandgap between the TWSs by the layer number of the middle domain due to the coupling effect, a topological Y-splitter with functionality of wavelength division multiplexing is explicitly demonstrated exploiting the unique feature of the dispersion curves of TWSs in the three THs. Our work not only offers a new method to realize pseudospin-polarized large-area TWSs with tunable mode-width, but also could provide new opportunities for practical applications in on-chip multifunctional (i.e., wavelength division multiplexing) photonic devices with topological protection and information processing with pseudospin-dependent transport.

3.
Opt Express ; 32(6): 8751-8762, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571125

RESUMO

The combination of surface coils and metamaterials remarkably enhance magnetic resonance imaging (MRI) performance for significant local staging flexibility. However, due to the coupling in between, impeded signal-to-noise ratio (SNR) and low-contrast resolution, further hamper the future growth in clinical MRI. In this paper, we propose a high-Q metasurface decoupling isolator fueled by topological LC loops for 1.5T surface coil MRI system, increasing the magnetic field up to fivefold at 63.8 MHz. We have employed a polarization conversion mechanism to effectively eliminate the coupling between the MRI metamaterial and the radio frequency (RF) surface transmitter-receiver coils. Furthermore, a high-Q metasurface isolator was achieved by taking advantage of bound states in the continuum (BIC) for extremely high-resolution MRI and spectroscopy. An equivalent physical model of the miniaturized metasurface design was put forward through LC circuit analysis. This study opens up a promising route for the easy-to-use and portable surface coil MRI scanners.

5.
Sci Adv ; 10(29): eado3937, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028808

RESUMO

Diffractive neural network in electromagnetic wave-driven system has attracted great attention due to its ultrahigh parallel computing capability and energy efficiency. However, recent neural networks based on the diffractive framework still face the bottlenecks of misalignment and relatively large size limiting their further applications. Here, we propose a planar diffractive neural network (pla-NN) with a highly integrated and conformal architecture to achieve direct signal processing in the microwave frequency. On the basis of printed circuit fabrication process, the misalignment could be effectively circumvented while enabling flexible extension for multiple conformal and stacking designs. We first conduct validation on the fashion-MNIST dataset and experimentally build up a system using the proposed network architecture for direct recognition of different geometry structures in the electromagnetic space. We envision that the presented architecture, once combined with the advanced dynamic maneuvering techniques and flexible topology, would exhibit unlimited potentials in the areas of high-performance computing, wireless sensing, and flexible wearable electronics.

6.
Front Pharmacol ; 15: 1359403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135785

RESUMO

Background: Despite significant benefits from targeted therapy in patients with driver mutations, inevitable drug resistance usually occurred in non-small cell lung cancer, highlighting the necessity for sequential treatments to prolong overall survival. Unfortunately, durable drug response has not been reported in posterior-line therapy of cases with acquired EML4-ALK fusion after resistance to osimertinib, urging the need of referable decision-making in clinical management. Case presentation: We present a case of a 71-year-old Chinese female, never smoker, diagnosed with invasive adenocarcinoma in the left inferior lobe of her lung, with metastases in regional lymph nodes. She received erlotinib treatment after the detection of coexistent EGFR L858R/G719S and BRAF V600E via next-generation sequencing of resected tumor tissue. Routine imaging revealed disease progression approximately 14 months after starting erlotinib treatment, followed by the detection of EGFR L858R through non-invasive liquid biopsy. Subsequently, osimertinib was administered, showing clinical activities for nearly 19 months until the emergence of an EML4-ALK fusion. Given the EML4-ALK fusion, a relatively rare resistance mechanism to osimertinib, she received third-line ensartinib treatment. One month later, alleviated tumor lesions plus normal serum marker levels demonstrated the effectiveness of ensartinib in overcoming resistance to osimertinib. Of note, the clinical response to ensartinib persisted for more than 14 months, superior to the previously reported efficacy of aletinib and crizotinib in osimertinib-failure cases. As of the last follow-up in July 2022, the patient showed no signs of recurrence and maintained a good life quality. Conclusion: We reported a third-line ensartinib therapy in a patient with lung adenocarcinoma who developed an acquired EML4-ALK fusion after sequential treatment with erlotinib and osimertinib. Given the rarity of the EML4-ALK fusion as a resistance mechanism to osimertinib, ensartinib emerges as a promising treatment option for this specific clinical challenge, offering superior efficacy and good safety.

7.
Brain Res Bull ; 216: 111050, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147243

RESUMO

BACKGROUND: G protein-coupled receptor 68 (GPR68), an orphan receptor, has emerged as a promising therapeutic target for mitigating neuronal inflammation and oxidative damage. This study explores the protective mechanisms of GPR68 in cerebral ischemia-reperfusion injury (CIRI). METHODS: An in vivo middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model was established. Mice received intraperitoneal injections of Ogerin, a selective GPR68 agonist. In vitro, GPR68 was overexpressed in SH-SY5Y and HMC3 cells, and the effects of oxygen-glucose deprivation/reperfusion (OGD/R) on cell viability were assessed using real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and flow cytometry. RESULTS: The expression of GPR68 was suppressed in cells subjected to OGD/R treatment, whereas its upregulation conferred protection to SH-SY5Y and HMC3 cells. In vivo, levels of GPR68 were reduced in brain tissues affected by MCAO/R, correlating with oxidative stress, inflammation, and neurological damage. Treatment with a GPR68 agonist decreased brain infarction, apoptosis, and dysregulated gene expression induced by MCAO/R. Mechanistically, GPR68 agonist treatment may inhibit the activation of the NF-κB/Hif-1α pathway, thereby reducing oxidative and inflammatory responses and enhancing protection against CIRI. CONCLUSIONS: This study confirms that the GPR68/NF-κB/Hif-1α axis modulates apoptosis, inflammation, and oxidative stress in CIRI, indicating that GPR68 is a potential therapeutic target for CIRI.

8.
J Control Release ; 370: 773-797, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734313

RESUMO

The spleen, body's largest secondary lymphoid organ, is also a vital hematopoietic and immunological organ. It is regarded as one of the most significant organs in humans. As more researchers recognize the functions of the spleen, clinical methods for treating splenic diseases and spleen-targeted drug delivery systems to improve the efficacy of spleen-related therapies have gradually developed. Many modification strategies (size, charge, ligand, protein corona) and hitchhiking strategies (erythrocytes, neutrophils) of nanoparticles (NPs) have shown a significant increase in spleen targeting efficiency. However, most of the targeted drug therapy strategies for the spleen are to enhance or inhibit the immune function of the spleen to achieve therapeutic effects, and there are few studies on spleen-related diseases. In this review, we not only provide a detailed summary of the design rules for spleen-targeted drug delivery systems in recent years, but also introduce common spleen diseases (splenic tumors, splenic injuries, and splenomegaly) with the hopes of generating more ideas for future spleen research.


Assuntos
Sistemas de Liberação de Medicamentos , Baço , Esplenopatias , Humanos , Baço/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Esplenopatias/tratamento farmacológico , Nanopartículas/administração & dosagem
9.
Medicine (Baltimore) ; 103(24): e37856, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875375

RESUMO

BACKGROUND: Currently, most studies primarily focus on directly comparing the efficacy and safety of angiotensin-converting enzyme inhibitors (ACEIs) and calcium channel blockers (CCBs), the two major classes of antihypertensive drugs. Moreover, the majority of studies are based on randomized controlled trials and traditional meta-analyses, with few exploring the efficacy and safety comparisons among various members of ACEIs and CCBs. METHODS: ACEIs and CCB were searched for in randomized controlled trials in CNKI, Wanfang, VIP, China Biology Medicine Disc (Si-noMed), PubMed, EMbase, and Cochrane Library databases. The search can be conducted till November 2022. Stata software (version 16.0) and R 4.1.3 was used for statistical analysis and graphics plotting, applying mvmeta, gemtc, and its packages. Meta-regression analysis was used to explore the inconsistencies of the studies. RESULTS: In 73 trials involving 33 different drugs, a total of 9176 hypertensive patients were included in the analysis, with 4623 in the intervention group and 4553 in the control group. The results of the analysis showed that, according to the SUCRA ranking, felodipine (MD = -12.34, 95% CI: -17.8 to -6.82) was the drug most likely to be the best intervention for systolic blood pressure, while nitrendipine (MD = -8.01, 95% CI: -11.71 to -4.18) was the drug most likely to be the best intervention for diastolic blood pressure. Regarding adverse drug reactions, nifedipine (OR = 0.32, 95% CI: 0.14-0.74) was the drug most likely to be the safest. CONCLUSION: The research findings indicate that nifedipine is the optimal intervention for reducing systolic blood pressure in hypertensive patients, nitrendipine is the optimal intervention for reducing diastolic blood pressure in hypertensive patients, and felodipine is the optimal intervention for safety.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Bloqueadores dos Canais de Cálcio , Hipertensão , Humanos , Bloqueadores dos Canais de Cálcio/uso terapêutico , Hipertensão/tratamento farmacológico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Metanálise em Rede , Anti-Hipertensivos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Nifedipino/uso terapêutico
10.
ACS Nano ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011561

RESUMO

The efficacy and safety of mRNA vaccines both rely on a fine-tuning of specific humoral and cellular immune responses. Instead of adjustments in vaccine component, we proposed a concept of chronological management of adjuvant effect to modulate the adaptive immune potency and preference inspired by natural virus infection. By simulating type I interferon expression dynamics during viral infection, three vaccine strategies employing distinct exposure sequences of adjuvant and mRNA have been developed, namely Precede, Coincide, and Follow. Follow, the strategy of adjuvant administration following mRNA, effectively suppressed tumor progression, which was attributed to enhanced mRNA translation, augmented p-MHC I expression, and elevated CD8+ T cell response. Meanwhile, Follow exhibited improved biosafety, characterized by reduced incidences of cardiac and liver toxicity, owing to its alteration to the vaccination microenvironment between successive injections. Our strategy highlights the importance of fine-tuning adjuvant effect dynamics in optimizing mRNA vaccines for clinical application.

11.
Biomater Sci ; 12(3): 808-809, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38240308

RESUMO

Correction for 'An E-selectin targeting and MMP-2-responsive dextran-curcumin polymeric prodrug for targeted therapy of acute kidney injury' by Jing-Bo Hu et al., Biomater. Sci., 2018, 6, 3397-3409, https://doi.org/10.1039/C8BM00813B.

12.
Nat Commun ; 15(1): 6686, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107313

RESUMO

All-optical diffractive neural networks, as analog artificial intelligence accelerators, leverage parallelism and analog computation for complex data processing. However, their low space transmission efficiency or large spatial dimensions hinder miniaturization and broader application. Here, we propose a terahertz spoof plasmonic neural network on a planar diffractive platform for direct multi-target recognition. Our approach employs a spoof surface plasmon polariton coupler array to construct a diffractive network layer, resulting in a compact, efficient, and easily integrable architecture. We designed three schemes: basis vector classification, multi-user recognition, and MNIST handwritten digit classification. Experimental results reveal that the terahertz spoof plasmonic neural network successfully classifies basis vectors, recognizes multi-user orientation information, and directly processes handwritten digits using a designed input framework comprising a metal grating array, transmitters, and receivers. This work broadens the application of terahertz plasmonic metamaterials, paving the way for terahertz on-chip integration, intelligent communication, and advanced computing systems.

13.
ACS Nano ; 18(13): 9688-9703, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38517764

RESUMO

Numerous evidence has demonstrated that the brain is not an immune-privileged organ but possesses a whole set of lymphatic transport system, which facilitates the drainage of harmful waste from brains to maintain cerebral homeostasis. However, as individuals age, the shrinkage and dysfunction of meningeal and deep cervical lymphatic networks lead to reduced waste outflow and elevated neurotoxic molecules deposition, further inducing aging-associated cognitive decline, which act as one of the pathological mechanisms of Alzheimer's disease. Consequently, recovering the function of meningeal and deep cervical lymph node (dCLNs) networks (as an important part of the brain waste removal system (BWRS)) of aged brains might be a feasible strategy. Herein we showed that the drug brain-entering efficiency was highly related to administration routes (oral, subcutaneous, or dCLN delivery). Besides, by injecting a long-acting lyotropic liquid crystalline implant encapsulating cilostazol (an FDA-approved selective PDE-3 inhibitor) and donepezil hydrochloride (a commonly used symptomatic relief agent to inhibit acetylcholinesterase for Alzheimer's disease) near the deep cervical lymph nodes of aged mice (about 20 months), an increase of lymphatic vessel coverage in the nodes and meninges was observed, along with accelerated drainage of macromolecules from brains. Compared with daily oral delivery of cilostazol and donepezil hydrochloride, a single administered dual drugs-loaded long-acting implants releasing for more than one month not only elevated drug concentrations in brains, improved the clearing efficiency of brain macromolecules, reduced Aß accumulation, enhanced cognitive functions of the aged mice, but improved patient compliance as well, which provided a clinically accessible therapeutic strategy toward aged Alzheimer's diseases.


Assuntos
Doença de Alzheimer , Vasos Linfáticos , Humanos , Camundongos , Animais , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Cilostazol , Donepezila , Acetilcolinesterase , Sistema Linfático/patologia , Encéfalo/patologia , Drenagem
14.
Nat Commun ; 15(1): 72, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167723

RESUMO

Obesity often leads to severe medical complications. However, existing FDA-approved medications to combat obesity have limited effectiveness in reducing adiposity and often cause side effects. These medications primarily act on the central nervous system or disrupt fat absorption through the gastrointestinal tract. Adipose tissue enlargement involves adipose hyperplasia and hypertrophy, both of which correlate with increased reactive oxygen species (ROS) and hyperactivated X-box binding protein 1 (XBP1) in (pre)adipocytes. In this study, we demonstrate that KT-NE, a nanoemulsion loaded with the XBP1 inhibitor KIRA6 and α-Tocopherol, simultaneously alleviates aberrant endoplasmic reticulum stress and oxidative stress in (pre)adipocytes. As a result, KT-NE significantly inhibits abnormal adipogenic differentiation, reduces lipid droplet accumulation, restricts lipid droplet transfer, impedes obesity progression, and lowers the risk of obesity-associated non-alcoholic fatty liver disease in female mice with obesity. Furthermore, diverse administration routes of KT-NE impact its in vivo biodistribution and contribute to localized and/or systemic anti-obesity effectiveness.


Assuntos
Adiposidade , Obesidade , Feminino , Animais , Camundongos , Hiperplasia/metabolismo , Distribuição Tecidual , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Hipertrofia/patologia , Dieta Hiperlipídica/efeitos adversos
15.
Cell Death Dis ; 15(7): 524, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043634

RESUMO

Invasion and migration are the key hallmarks of cancer, and aggressive growth is a major factor contributing to treatment failure and poor prognosis in glioblastoma. Protein arginine methyltransferase 6 (PRMT6), as an epigenetic regulator, has been confirmed to promote the malignant proliferation of glioblastoma cells in previous studies. However, the effects of PRMT6 on glioblastoma cell invasion and migration and its underlying mechanisms remain elusive. Here, we report that PRMT6 functions as a driver element for tumor cell invasion and migration in glioblastoma. Bioinformatics analysis and glioma sample detection results demonstrated that PRMT6 is highly expressed in mesenchymal subtype or invasive gliomas, and is significantly negatively correlated with their prognosis. Inhibition of PRMT6 (using PRMT6 shRNA or inhibitor EPZ020411) reduces glioblastoma cell invasion and migration in vitro, whereas overexpression of PRMT6 produces opposite effects. Then, we identified that PRMT6 maintains the protein stability of EZH2 by inhibiting the degradation of EZH2 protein, thereby mediating the invasion and migration of glioblastoma cells. Further mechanistic investigations found that PRMT6 inhibits the transcription of TRAF6 by activating the histone methylation mark (H3R2me2a), and reducing the interaction between TRAF6 and EZH2 to enhance the protein stability of EZH2 in glioblastoma cells. Xenograft tumor assay and HE staining results showed that the expression of PRMT6 could promote the invasion of glioblastoma cells in vivo, the immunohistochemical staining results of mouse brain tissue tumor sections also confirmed the regulatory relationship between PRMT6, TRAF6, and EZH2. Our findings illustrate that PRMT6 suppresses TRAF6 transcription via H3R2me2a to enhance the protein stability of EZH2 to facilitate glioblastoma cell invasion and migration. Blocking the PRMT6-TRAF6-EZH2 axis is a promising strategy for inhibiting glioblastoma cell invasion and migration.


Assuntos
Movimento Celular , Proteína Potenciadora do Homólogo 2 de Zeste , Glioblastoma , Invasividade Neoplásica , Estabilidade Proteica , Proteína-Arginina N-Metiltransferases , Ubiquitinação , Animais , Feminino , Humanos , Masculino , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Nucleares , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteólise , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética
16.
J Control Release ; 373: 890-904, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39067794

RESUMO

Immune checkpoint inhibitors (ICIs) exhibit compromised therapeutic efficacy in many patients with advanced cancers, particularly those with liver metastases. Much of this incapability can be ascribed as an irresponsiveness resulting from the "cold" hepatic tumor microenvironment that acts as T cell "traps" for which there currently lack countermeasures. We report a novel nanomedicine that converts the hepatic immune microenvironment to a "hot" phenotype by targeting hepatic macrophage-centric T cell elimination. Using the nanomedicine, composed of KIRA6 (an endothelium reticulum stress inhibitor), α-Tocopherol nanoemulsions, and anti-PD1 antibodies, we found its potency in murine models of orthotopic colorectal tumors and hepatic metastases, restoring immune responses and enhancing anti-tumor effects. A post-treatment scrutiny of the immune microenvironment landscape in the liver reveals repolarization of immunosuppressive hepatic macrophages, upregulation of Th1-like effector CD4+ T cells, and rejuvenation of dendritic cells along with CD8+ T cells. These findings suggest adaptations of liver-centric immune milieu modulation strategies to improve the efficacy of ICIs for a variety of "cold" tumors and their liver metastases.

17.
Mil Med Res ; 11(1): 39, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902798

RESUMO

BACKGROUND: Despite the efficacy of absolute ethanol (EtOH), its radiolucency introduces several risks in interventional therapy for treating vascular malformations. This study aims to develop a novel radiopaque ethanol injection (REI) to address this issue. METHODS: Iopromide is mixed with ethanol to achieve radiopacity and improve the physicochemical properties of the solution. Overall, 82 male New Zealand white rabbits are selected for in vivo radiopacity testing, peripheral vein sclerosis [animals were divided into the following 5 groups (n = 6): negative control (NC, saline, 0.250 ml/kg), positive control (EtOH, 0.250 ml/kg), low-dose REI (L-D REI, 0.125 ml/kg), moderate-dose REI (M-D REI, 0.250 ml/kg), and high-dose REI (H-D REI 0.375 ml/kg)], pharmacokinetic analyses (the blood sample was harvested before injection, 5 min, 10 min, 20 min, 40 min, 1 h, 2 h, 4 h, and 8 h after injection in peripheral vein sclerosis experiment), peripheral artery embolization [animals were divided into the following 5 groups (n = 3): NC (saline, 0.250 ml/kg), positive control (EtOH, 0.250 ml/kg), L-D REI (0.125 ml/kg), M-D REI (0.250 ml/kg), and H-D REI (0.375 ml/kg)], kidney transcatheter arterial embolization [animals were divided into the following 4 groups (n = 3): positive control (EtOH, 0.250 ml/kg), L-D REI (0.125 ml/kg), M-D REI (0.250 ml/kg), and H-D REI (0.375 ml/kg); each healthy kidney was injected with saline as negative control], and biosafety evaluations [animals were divided into the following 5 groups (n = 3): NC (0.250 ml/kg), high-dose EtOH (0.375 ml/kg), L-D REI (0.125 ml/kg), M-D REI (0.250 ml/kg), and H-D REI (0.375 ml/kg)]. Then, a prospective cohort study involving 6 patients with peripheral venous malformations (VMs) is performed to explore the clinical safety and effectiveness of REI. From Jun 1, 2023 to August 31, 2023, 6 patients [age: (33.3 ± 17.2) years] with lingual VMs received sclerotherapy of REI and 2-month follow-up. Adverse events and serious adverse events were evaluated, whereas the efficacy of REI was determined by both the traceability of the REI under DSA throughout the entire injection and the therapeutic effect 2 months after a single injection. RESULTS: The REI contains 81.4% ethanol (v/v) and 111.3 mg/ml iodine, which can be traced throughout the injection in the animals and patients. The REI also exerts a similar effect as EtOH on peripheral venous sclerosis, peripheral arterial embolization, and renal embolization. Furthermore, the REI can be metabolized at a similar rate compared to EtOH and Ultravist® and did not cause injury to the animals' heart, liver, spleen, lungs, kidneys and brain. No REI-related adverse effects have occurred during sclerotherapy of VMs, and 4/6 patients (66.7%) have achieved complete response at follow-up. CONCLUSION: In conclusion, REI is safe, exerts therapeutic effects, and compensates for the radiolucency of EtOH in treating VMs. TRIAL REGISTRATION: The clinical trial was registered as No. ChiCTR2300071751 on May 24 2023.


Assuntos
Etanol , Malformações Vasculares , Animais , Coelhos , Etanol/uso terapêutico , Etanol/farmacologia , Masculino , Malformações Vasculares/terapia , Malformações Vasculares/tratamento farmacológico , Humanos , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Meios de Contraste/uso terapêutico , Iohexol/análogos & derivados
18.
Cancer Biol Med ; 21(4)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38164734

RESUMO

Immunotherapy represents a promising strategy for cancer treatment that utilizes immune cells or drugs to activate the patient's own immune system and eliminate cancer cells. One of the most exciting advances within this field is the targeting of neoantigens, which are peptides derived from non-synonymous somatic mutations that are found exclusively within cancer cells and absent in normal cells. Although neoantigen-based therapeutic vaccines have not received approval for standard cancer treatment, early clinical trials have yielded encouraging outcomes as standalone monotherapy or when combined with checkpoint inhibitors. Progress made in high-throughput sequencing and bioinformatics have greatly facilitated the precise and efficient identification of neoantigens. Consequently, personalized neoantigen-based vaccines tailored to each patient have been developed that are capable of eliciting a robust and long-lasting immune response which effectively eliminates tumors and prevents recurrences. This review provides a concise overview consolidating the latest clinical advances in neoantigen-based therapeutic vaccines, and also discusses challenges and future perspectives for this innovative approach, particularly emphasizing the potential of neoantigen-based therapeutic vaccines to enhance clinical efficacy against advanced solid tumors.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Imunoterapia , Neoplasias , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Medicina de Precisão/métodos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA