Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gastroenterology ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810839

RESUMO

BACKGROUND AND AIMS: Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC. METHODS: We measured fecal short-chain fatty acids levels using targeted gas chromatography-mass spectrometry and analyzed circulating MDSCs using flow cytometry in 2 independent PBC cohorts. Human and murine MDSCs were differentiated in vitro in the presence of butyrate, followed by transcriptomic, epigenetic (CUT&Tag-seq and chromatin immunoprecipitation-quantitative polymerase chain reaction), and metabolic (untargeted liquid chromatography-mass spectrometry, mitochondrial stress test, and isotope tracing) analyses. The in vivo role of butyrate-MDSCs was evaluated in a 2-octynoic acid-bovine serum albumin-induced cholangitis murine model. RESULTS: Decreased butyrate levels and defective MDSCs function were found in patients with incomplete response to ursodeoxycholic acid, compared with those with adequate response. Butyrate induced expansion and suppressive activity of MDSCs in a manner dependent on PPARD-driven fatty acid ß-oxidation (FAO). Pharmaceutical inhibition or genetic knockdown of the FAO rate-limiting gene CPT1A abolished the effect of butyrate. Furthermore, butyrate inhibited HDAC3 function, leading to enhanced acetylation of lysine 27 on histone 3 modifications at promoter regions of PPARD and FAO genes in MDSCs. Therapeutically, butyrate administration alleviated immune-mediated cholangitis in mice via MDSCs, and adoptive transfer of butyrate-treated MDSCs also displayed protective efficacy. Importantly, reduced expression of FAO genes and impaired mitochondrial physiology were detected in MDSCs from ursodeoxycholic acid nonresponders, and their impaired suppressive function was restored by butyrate. CONCLUSIONS: We identify a critical role for butyrate in modulation of MDSC homeostasis by orchestrating epigenetic and metabolic crosstalk, proposing a novel therapeutic strategy for treating PBC.

2.
Hepatology ; 79(1): 25-38, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37505225

RESUMO

BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is a chronic progressive liver disease characterized by the infiltration of intrahepatic tissue-resident memory CD8 + T cells (T RM ). Itaconate has demonstrated therapeutic potential in modulating inflammation. An unmet need for PSC is the reduction of biliary inflammation, and we hypothesized that itaconate may directly modulate pathogenic T RM . APPROACH AND RESULTS: The numbers of intrahepatic CD103 + T RM were evaluated by immunofluorescence in PSC (n = 32), and the serum levels of itaconate in PSC (n = 64), primary biliary cholangitis (PBC) (n = 60), autoimmune hepatitis (AIH) (n = 49), and healthy controls (n = 109) were determined by LC-MS/MS. In addition, the frequencies and immunophenotypes of intrahepatic T RM using explants from PSC (n = 5) and healthy donors (n = 6) were quantitated by flow cytometry. The immunomodulatory properties of 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) on CD103 + T RM were studied in vitro. Finally, the therapeutic potential of itaconate was studied by the administration of 4-OI and deficiency of immune-responsive gene 1 (encodes the aconitate decarboxylase producing itaconate) in murine models of PSC. Intrahepatic CD103 + T RM was significantly expanded in PSC and was positively correlated with disease severity. Serum itaconate levels decreased in PSC. Importantly, 4-OI inhibited the induction and effector functions of CD103 + T RM in vitro. Mechanistically, 4-OI blocked DNA demethylation of RUNX3 in CD8 + T cells. Moreover, 4-OI reduced intrahepatic CD103 + T RM and ameliorated liver injury in murine models of PSC. CONCLUSIONS: Itaconate exerted immunomodulatory activity on CD103 + T RM in both in vitro and murine PSC models. Our study suggests that targeting pathogenic CD103 + T RM with itaconate has therapeutic potential in PSC.


Assuntos
Colangite Esclerosante , Hepatopatias , Animais , Camundongos , Colangite Esclerosante/patologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Inflamação
3.
J Autoimmun ; 143: 103163, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301505

RESUMO

BACKGROUND: In patients with primary biliary cholangitis (PBC) treated with ursodeoxycholic acid (UDCA), the presence of moderate-to-severe interface hepatitis is associated with a higher risk of liver transplantation and death. This highlights the need for novel treatment approaches. In this study, we aimed to investigate whether combination therapy of UDCA and immunosuppressant (IS) was more effective than UDCA monotherapy. METHODS: We conducted a multicenter study involving PBC patients with moderate-to-severe interface hepatitis who underwent paired liver biopsies. Firstly, we compared the efficacy of the combination therapy with UDCA monotherapy on improving biochemistry, histology, survival rates, and prognosis. Subsequently we investigated the predictors of a beneficial response. RESULTS: This retrospective cohort study with prospectively collected data was conducted in China from January 2009 to April 2023. Of the 198 enrolled patients, 32 underwent UDCA monotherapy, while 166 received combination therapy, consisting of UDCA combined with prednisolone, prednisolone plus mycophenolate mofetil (MMF), or prednisolone plus azathioprine (AZA). The monotherapy group was treated for a median duration of 37.6 months (IQR 27.5-58.1), and the combination therapy group had a median treatment duration of 39.3 months (IQR 34.5-48.8). The combination therapy showed a significantly greater efficacy in reducing fibrosis compared to UDCA monotherapy, with an 8.3-fold increase in the regression rate (from 6.3% to 52.4%, P < 0.001). Other parameters, including biochemistry, survival rates, and prognosis, supported its effectiveness. Baseline IgG >1.3 × ULN and ALP <2.4 × ULN were identified as predictors of regression following the combination therapy. A predictive score named FRS, combining these variables, accurately identified individuals achieving fibrosis regression with a cut-off point of ≥ -0.163. The predictive value was validated internally and externally. CONCLUSION: Combination therapy with IS improves outcomes in PBC patients with moderate-to-severe interface hepatitis compared to UDCA monotherapy. Baseline IgG and ALP are the most significant predictors of fibrosis regression. The new predictive score, FRS, incorporating baseline IgG and ALP, can effectively identify individuals who would benefit from the combination therapy.


Assuntos
Hepatite , Cirrose Hepática Biliar , Humanos , Cirrose Hepática Biliar/diagnóstico , Cirrose Hepática Biliar/tratamento farmacológico , Colagogos e Coleréticos/uso terapêutico , Estudos Retrospectivos , Resultado do Tratamento , Ácido Ursodesoxicólico/uso terapêutico , Imunossupressores/uso terapêutico , Prednisolona/uso terapêutico , Terapia de Imunossupressão , Hepatite/complicações , Imunoglobulina G
4.
Hepatology ; 78(1): 10-25, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799463

RESUMO

BACKGROUNDS: Prolyl-4-hydroxylases (P4Hs) are key enzymes in collagen synthesis. The P4HA subunit (P4HA1, P4HA2, and P4HA3) contains a substrate binding and catalyzation domain. We postulated that P4HA2 would play a key role in the cholangiocyte pathology of cholestatic liver diseases. METHODS: We studied humans with primary biliary cholangitis (PBC) and Primary sclerosing cholangitis (PSC), P4HA2 -/- mice injured by DDC, and P4HA2 -/- /MDR2 -/- double knockout mice. A parallel study was performed in patients with PBC, PSC, and controls using immunohistochemistry and immunofluorescence. In the murine model, the level of ductular reaction and biliary fibrosis were monitored by histology, qPCR, immunohistochemistry, and Western blotting. Expression of Yes1 Associated Transcriptional Regulator (YAP) phosphorylation was measured in isolated mouse cholangiocytes. The mechanism of P4HA2 was explored in RBE and 293T cell lines by using qPCR, Western blot, immunofluorescence, and co-immunoprecipitation. RESULTS: The hepatic expression level of P4HA2 was highly elevated in patients with PBC or PSC. Ductular reactive cholangiocytes predominantly expressed P4HA2. Cholestatic patients with more severe liver injury correlated with levels of P4HA2 in the liver. In P4HA2 -/- mice, there was a significantly reduced level of ductular reaction and fibrosis compared with controls in the DDC-induced chronic cholestasis. Decreased liver fibrosis and ductular reaction were observed in P4HA2 -/- /MDR2 -/- mice compared with MDR2 -/- mice. Cholangiocytes isolated from P4HA2 -/- /MDR2 -/- mice displayed a higher level of YAP phosphorylation, resulting in cholangiocytes proliferation inhibition. In vitro studies showed that P4HA2 promotes RBE cell proliferation by inducing SAV1 degradation, eventually resulting in the activation of YAP. CONCLUSIONS: P4HA2 promotes hepatic ductular reaction and biliary fibrosis by regulating the SAV1-mediated Hippo signaling pathway. P4HA2 is a potential therapeutic target for PBC and PSC.


Assuntos
Colangite Esclerosante , Colestase , Hepatopatias , Animais , Humanos , Camundongos , Colangite Esclerosante/patologia , Colestase/metabolismo , Modelos Animais de Doenças , Fibrose , Fígado/patologia , Cirrose Hepática/patologia , Hepatopatias/patologia , Camundongos Knockout , Pró-Colágeno-Prolina Dioxigenase/metabolismo
5.
J Hepatol ; 79(6): 1478-1490, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659731

RESUMO

BACKGROUND & AIMS: Macrophages are key elements in the pathogenesis of cholestatic liver diseases. Arid3a plays a prominent role in the biologic properties of hematopoietic stem cells, B lymphocytes and tumor cells, but its ability to modulate macrophage function during cholestasis remains unknown. METHODS: Gene and protein expression and cellular localization were assessed by q-PCR, immunohistochemistry, immunofluorescence staining and flow cytometry. We generated myeloid-specific Arid3a knockout mice and established three cholestatic murine models. The transcriptome was analyzed by RNA-seq. A specific inhibitor of the Mertk receptor was used in vitro and in vivo. Promoter activity was determined by chromatin immunoprecipitation-seq against Arid3a and a luciferase reporter assay. RESULTS: In cholestatic murine models, myeloid-specific deletion of Arid3a alleviated cholestatic liver injury (accompanied by decreased accumulation of macrophages). Arid3a-deficient macrophages manifested a more reparative phenotype, which was eliminated by in vitro treatment with UNC2025, a specific inhibitor of the efferocytosis receptor Mertk. Efferocytosis of apoptotic cholangiocytes was enhanced in Arid3a-deficient macrophages via upregulation of Mertk. Arid3a negatively regulated Mertk transcription by directly binding to its promoter. Targeting Mertk in vivo effectively reversed the protective phenotype of Arid3a deficiency in macrophages. Arid3a was upregulated in hepatic macrophages and circulating monocytes in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Mertk was correspondingly upregulated and negatively correlated with Arid3a expression in PBC and PSC. Mertk+ cells were located in close proximity to cholangiocytes, while Arid3a+ cells were scattered among immune cells with greater spatial distances to hyperplastic cholangiocytes in PBC and PSC. CONCLUSIONS: Arid3a promotes cholestatic liver injury by impairing Mertk-mediated efferocytosis of apoptotic cholangiocytes by macrophages during cholestasis. The Arid3a-Mertk axis is a promising novel therapeutic target for cholestatic liver diseases. IMPACT AND IMPLICATIONS: Macrophages play an important role in the pathogenesis of cholestatic liver diseases. This study reveals that macrophages with Arid3a upregulation manifest a pro-inflammatory phenotype and promote cholestatic liver injury by impairing Mertk-mediated efferocytosis of apoptotic cholangiocytes during cholestasis. Although we now offer a new paradigm to explain how efferocytosis is regulated in a myeloid cell autonomous manner, the regulatory effects of Arid3a on chronic liver diseases remain to be further elucidated.


Assuntos
Colestase , Proteínas de Ligação a DNA , Hepatopatias , Fatores de Transcrição , c-Mer Tirosina Quinase , Animais , Camundongos , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Colestase/metabolismo , Hepatopatias/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Fagocitose/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Autoimmun ; 135: 102993, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642058

RESUMO

BACKGROUND & AIMS: The N6-methyladenosine (m6A) reader YTH domain-containing family protein 2 (YTHDF2) is critically involved in a multiplicity of biological processes by mediating the degradation of m6A modified mRNAs. Based on our current understanding of this process, we hypothesized that YTHDF2 will play a role in the natural history and function of myeloid-derived suppressor cells (MDSC) and in particular in AIH. APPROACH & RESULTS: We took advantage of YTHDF2 conditional knock-out mice to first address the phenotype and function of MDSCs by flow cytometry. Importantly, the loss of YTHDF2 resulted in a gradual elevation of MDSCs including PMN-MDSCs both in liver and ultimately in the BM. Notably, YTHDF2 deficiency in myeloid cells attenuated concanavalin (ConA)-induced liver injury, with enhanced expansion and chemotaxis to liver. Furthermore, MDSCs from Ythdf2CKO mice had a greater suppressive ability to inhibit the proliferation of T cells. Using multi-omic analysis of m6A RNA immunoprecipitation (RIP) and mRNA sequencing, we noted RXRα as potential target of YTHDF2. Indeed YTHDF2-RIP-qPCR confirmed that YTHDF2 directly binds RXRα mRNA thus promoting degradation and decreasing gene expression. Finally, by IHC and immunofluorescence, YTHDF2 expression was significantly upregulated in the liver of patients with AIH which correlated with the degree of inflammation. CONCLUSION: Suppression of YTHDF2 enhances the expansion, chemotaxis and suppressive function of MDSCs and our data reveals a unique therapeutical target in immune mediated hepatitis.


Assuntos
Hepatite Autoimune , Células Supressoras Mieloides , Animais , Camundongos , Células Mieloides , Linfócitos T , Fatores de Transcrição/metabolismo
7.
Gut ; 71(5): 899-909, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34035120

RESUMO

OBJECTIVE: Multiple clinical similarities exist between IgG4-related sclerosing cholangitis (IgG4-SC) and primary sclerosing cholangitis (PSC), and while gut dysbiosis has been extensively studied in PSC, the role of the gut microbiota in IgG4-SC remains unknown. Herein, we aimed to evaluate alterations of the gut microbiome and metabolome in IgG4-SC and PSC. DESIGN: We performed 16S rRNA gene amplicon sequencing of faecal samples from 135 subjects with IgG4-SC (n=34), PSC (n=37) and healthy controls (n=64). A subset of the samples (31 IgG4-SC, 37 PSC and 45 controls) also underwent untargeted metabolomic profiling. RESULTS: Compared with controls, reduced alpha-diversity and shifted microbial community were observed in IgG4-SC and PSC. These changes were accompanied by differences in stool metabolomes. Importantly, despite some common variations in the microbiota composition and metabolic activity, integrative analyses identified distinct host-microbe associations in IgG4-SC and PSC. The disease-associated genera and metabolites tended to associate with the transaminases in IgG4-SC. Notable depletion of Blautia and elevated succinic acid may underlie hepatic inflammation in IgG4-SC. In comparison, potential links between the microbial or metabolic signatures and cholestatic parameters were detected in PSC. Particularly, concordant decrease of Eubacterium and microbiota-derived metabolites, including secondary bile acids, implicated novel host-microbial metabolic pathways involving cholestasis of PSC. Interestingly, the predictive models based on metabolites were more effective in discriminating disease status than those based on microbes. CONCLUSIONS: Our data reveal that IgG4-SC and PSC possess divergent host-microbe interplays that may be involved in disease pathogenesis. These data emphasise the uniqueness of IgG4-SC.


Assuntos
Colangite Esclerosante , Colestase , Microbioma Gastrointestinal , Colangite Esclerosante/microbiologia , Humanos , Imunoglobulina G , Metaboloma , RNA Ribossômico 16S/genética
8.
J Hepatol ; 77(5): 1311-1324, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35753523

RESUMO

BACKGROUND & AIMS: Pyruvate dehydrogenase (PDC)-E2 specific CD8+ T cells play a leading role in biliary destruction in PBC. However, there are limited data on the characterization of these autoantigen-specific CD8+ T cells, particularly in the liver. Herein, we aimed to identify pathogenic intrahepatic CD8+ T-cell subpopulations and investigate their immunobiology in PBC. METHODS: Phenotypic and functional analysis of intrahepatic T-cell subsets were performed by flow cytometry. CD103+ TRM cell frequency was evaluated by histological staining. The transcriptome and metabolome were analyzed by RNA-seq and liquid chromatography-mass spectrometry, respectively. Cytotoxicity of TRM cells against cholangiocytes was assayed in a 3D organoid co-culture system. Moreover, the longevity (long-term survival) of TRM cells in vivo was studied by 2-octynoic acid-BSA (2OA-BSA) immunization, Nudt1 conditional knock-out and adoptive co-transfer in a murine model. RESULTS: Intrahepatic CD103+ TRM (CD69+CD103+CD8+) cells were significantly expanded, hyperactivated, and potentially specifically reactive to PDC-E2 in patients with PBC. CD103+ TRM cell frequencies correlated with clinical and histological indices of PBC and predicted poor ursodeoxycholic acid response. NUDT1 blockade suppressed the cytotoxic effector functions of CD103+ TRM cells upon PDC-E2 re-stimulation. NUDT1 overexpression in CD8+ T cells promoted tissue-residence programming in vitro; inhibition or knockdown of NUDT1 had the opposite effect. Pharmacological blockade or genetic deletion of NUDT1 eliminated CD103+ TRM cells and alleviated cholangitis in mice immunized with 2OA-BSA. Significantly, NUDT1-dependent DNA damage resistance potentiates CD8+ T-cell tissue-residency via the PARP1-TGFßR axis in vitro. Consistently, PARP1 inhibition restored NUDT1-deficient CD103+ TRM cell durable survival and TGFß-Smad signaling. CONCLUSIONS: CD103+ TRM cells are the dominant population of PDC-E2-specific CD8+ T lymphocytes in the livers of patients with PBC. The role of NUDT1 in promoting pathogenic CD103+ TRM cell accumulation and longevity represents a novel therapeutic target in PBC. LAY SUMMARY: Primary biliary cholangitis (PBC) is a rare inflammatory condition of the bile ducts. It can be treated with ursodeoxycholic acid, but a large percentage of patients respond poorly to this treatment. Liver-infiltrating memory CD8+ T cells recognizing the PDC-E2 immunodominant epitope are critical in the pathogenesis of PBC. We identifed the key pathogenic CD8+ T cell subset, and worked out the mechanisms of its hyperactivation and longevity, which could be exploited therapeutically.


Assuntos
Linfócitos T CD8-Positivos , Cirrose Hepática Biliar , Animais , Camundongos , Autoantígenos , Epitopos Imunodominantes , Cirrose Hepática Biliar/genética , Oxirredutases , Piruvatos , Fator de Crescimento Transformador beta , Ácido Ursodesoxicólico/farmacologia
9.
Hepatology ; 74(2): 847-863, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33554350

RESUMO

BACKGROUND AND AIMS: The diverse inflammatory response found in the liver of patients with autoimmune hepatitis (AIH) is well established, but identification of potentially pathogenic subpopulations has proven enigmatic. APPROACH AND RESULTS: We report herein that CD69+ CD103+ CD8+ tissue-resident memory T cells (TRM ) are significantly increased in the liver of patients with AIH compared to chronic hepatitis B, NAFLD, and healthy control tissues. In addition, there was a significant statistical correlation between elevation of CD8+ TRM cells and AIH disease severity. Indeed, in patients with successful responses to immunosuppression, the frequencies of such hepatic CD8+ TRM cells decreased significantly. CD69+ CD8+ and CD69+ CD103+ CD8+ T cells, also known as CD8+ TRM cells, reflect tissue residency and are well known to provide intense immune antigenic responses. Hence, it was particularly interesting that patients with AIH also manifest an elevated expression of IL-15 and TGF-ß on inflammatory cells, and extensive hepatic expression of E-cadherin; these factors likely contribute to the development and localization of CD8+ TRM cells. Based on these data and, in particular, the relationships between disease severity and CD8+ TRM cells, we studied the mechanisms involved with glucocorticoid (GC) modulation of CD8+ TRM cell expansion. Our data reflect that GCs in vitro inhibit the expansion of CD8+ TRM cells induced by IL-15 and TGF-ß and with direct down-regulation of the nuclear factor Blimp1 of CD8+ TRM cells. CONCLUSIONS: Our data suggest that CD8+ TRM cells play a critical role in the pathogenesis of AIH, and GCs attenuate hepatic inflammation through direct inhibition of CD8+ TRM cell expansion.


Assuntos
Hepatite Autoimune/imunologia , Fígado/patologia , Células T de Memória/imunologia , Adulto , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Biópsia , Antígenos CD8/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Feminino , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Voluntários Saudáveis , Hepatite B Crônica/imunologia , Hepatite B Crônica/patologia , Hepatite Autoimune/diagnóstico , Hepatite Autoimune/tratamento farmacológico , Hepatite Autoimune/patologia , Humanos , Cadeias alfa de Integrinas/metabolismo , Lectinas Tipo C/metabolismo , Fígado/imunologia , Masculino , Células T de Memória/efeitos dos fármacos , Células T de Memória/metabolismo , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/antagonistas & inibidores , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Índice de Gravidade de Doença
10.
J Autoimmun ; 103: 102293, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31255417

RESUMO

Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease with an immunopathogenesis that includes highly differentiated cytotoxic T cell infiltration in portal areas. We have taken advantage of a large and well-defined cohort of patients with PBC, AIH, chronic hepatitis virus, and healthy controls to study for the presence of highly differentiated T cells which express the killer cell lectin-like receptor G1 (KLRG1). Such studies were performed using both liver and peripheral blood mononuclear cells. In particular, gene expression data (GSE79850) from 16 PBC patients stratified according to future risk of liver transplantation were analyzed for markers of highly differentiated cytotoxic T cells. Liver biopsy samples from 44 PBC patients were studied by immunohistochemistry and a separate cohort of PBC blood samples were studied by flow cytometry. Gene expression data demonstrated correlation of increased KLRG1 and cytotoxic lymphocyte molecules, such as granzyme B (GZMB) and perforin (PRF1), to disease severity as measured by future risk of liver transplantation. Immunohistochemistry demonstrated abundant infiltration of KLRG1+ cells into liver portal areas (mean of 45% of infiltrating cells, range 25-75%) positively correlated with hepatic inflammatory (r = 0.47, p = 0.001) and hepatic fibrosis (r = 0.34, p = 0.021) scores. KLRG1+ lymphocyte liver portal area infiltration was positively correlated with serum alkaline phosphatase (r = 0.45, p = 0.005) and GGT (r = 0.40, p = 0.014), and AST (r = 0.35, p = 0.033) levels. Mononuclear blood flow cytometry studies showed KLRG1+ lymphocytes had greater levels of cytotoxic molecules (granzyme B and perforin), inflammatory cytokines (IFN-γ and TNF-α) and inflammatory chemokine receptors (CCR5 and CX3CR1) than KLRG1-counterparts. However, clearly the most significant data was that found in liver with the intense portal infiltrates that are unique to PBC. Conclusion: Highly cytotoxic KLRG1+ lymphocytes have invaded PBC liver portal areas. Liver KLRG1 gene expression and the abundance of KLRG1+ lymphocytes are positively correlated with disease biomarkers used as clinical trial outcome measures (liver transplantation and serum alkaline phosphatase), suggesting the targeting of KLRG1+ lymphocytes as a rational approach for PBC therapeutic drug development.


Assuntos
Lectinas Tipo C/metabolismo , Fígado/fisiologia , Receptores Imunológicos/metabolismo , Linfócitos T Citotóxicos/imunologia , Adulto , Fosfatase Alcalina/sangue , Células Cultivadas , Estudos de Coortes , Citocinas/metabolismo , Feminino , Fibrose , Granzimas/genética , Granzimas/metabolismo , Hepatite , Humanos , Lectinas Tipo C/genética , Fígado/patologia , Cirrose Hepática Biliar/imunologia , Masculino , Pessoa de Meia-Idade , Perforina/genética , Perforina/metabolismo , Receptores Imunológicos/genética , Risco , Transcriptoma , Regulação para Cima
11.
Hepatology ; 67(1): 232-246, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28777871

RESUMO

There is increasing awareness of the immunologic roles of liver mononuclear populations, including myeloid-derived suppressor cells (MDSCs). We took advantage of a large well-defined cohort of 148 patients with liver inflammation and 45 healthy controls to focus on the qualitative and quantitative characteristics of MDSCs. We investigated the frequency, phenotype, and functional capacities of MDSCs by using peripheral blood MDSCs in a cohort of 55 patients with primary biliary cholangitis (PBC), 40 with autoimmune hepatitis, 39 with chronic hepatitis B, 14 with nonalcoholic fatty liver disease, and 45 healthy controls. This was followed by a liver-targeted determination in 27 patients with PBC, 27 with autoimmune hepatitis, 20 with chronic hepatitis B, 14 with nonalcoholic fatty liver disease, and 6 controls. We then focused on mechanisms of this expansion with PBC as an example, using both ursodeoxycholic acid-naive and treated patients. HLA-DR-/low CD33+ CD11b+ CD14+ CD15- monocytic MDSCs were elevated in diseases characterized by liver inflammation compared to healthy controls. Using PBC as a focus, there was a significant correlation between levels of circulating MDSCs and disease-related biochemical markers (alkaline phosphatase, total bilirubin). We found higher amounts of MDSCs in patients with PBC who were responsive to ursodeoxycholic acid. MDSCs from PBC were found to manifest a potent immunosuppressive function. There was a significant correlation in the accumulation of hepatic MDSCs in the inflamed lesions of PBC with histologic changes, such as fibrosis. We also found that cysteine-rich protein 61 (CCN1), a highly expressed protein in impaired cholangiocytes and hepatocytes, contributes to MDSC expansion and MDSC inducible nitric oxide synthase-associated immune suppression. CONCLUSION: CCN1 modulates expansion and a suppressive function of MDSCs. Our data highlight the potential functions of CCN1 on MDSCs and suggest therapeutic implications in inflammatory liver diseases. (Hepatology HEPATOLOGY 2018;67:232-246).


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Hepatite B Crônica/sangue , Hepatite Autoimune/sangue , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Biomarcadores/sangue , Biópsia por Agulha , Estudos de Casos e Controles , Células Cultivadas , Distribuição de Qui-Quadrado , Proteína Rica em Cisteína 61/imunologia , Feminino , Hepatite B Crônica/patologia , Hepatite Autoimune/patologia , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Células Supressoras Mieloides/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Valores de Referência , Índice de Gravidade de Doença
12.
J Autoimmun ; 53: 55-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24721598

RESUMO

The immunobiology of FXR has attracted significant attention in immune regulation and innate immunity. We have studied the mechanism of action of FXR activation on two models of acute hepatitis, inflammation mediated by Con A and α-GalCer and focused on the interactions of FXR activation and expression of PIR-B, both in vivo and in vitro using luciferase reporter and CHIP assays. In addition, based upon our data, we studied the role of FXR activation on the immunobiology of myeloid-derived suppressor cells (MDSCs). Importantly, we report herein that FXR activation reduces the inflammatory insult induced by either α-GalCer or Con A; such treatment expands CD11b(+)Ly6C(+) MDSCs. The protective effect of FXR activation is dependent on expansion of MDSCs, particularly liver CD11b(+)Ly6C(high) cells. Indeed, FXR activation enhances the suppressor function of MDSCs through upregulation of PIR-B by binding the PIR-B promoter. FXR activation drives the accumulation of MDSCs to liver through upregulation of S100A8. FXR activation facilitates homing and function of MDSCs, which function as a critical negative feedback loop in immune-mediated liver injury. The novel mechanisms defined herein emphasize not only the importance of liver lymphoid subpopulations, but also the potential roles of modulating FXR in autoimmune liver disease.


Assuntos
Hepatite Autoimune/imunologia , Fígado/imunologia , Células Mieloides/imunologia , Receptores Citoplasmáticos e Nucleares/imunologia , Animais , Antígenos Ly/genética , Antígenos Ly/imunologia , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Calgranulina A/genética , Calgranulina A/imunologia , Concanavalina A/efeitos adversos , Concanavalina A/farmacologia , Galactosilceramidas/toxicidade , Hepatite Autoimune/genética , Hepatite Autoimune/patologia , Fígado/patologia , Camundongos , Camundongos Transgênicos , Mitógenos/efeitos adversos , Mitógenos/farmacologia , Células Mieloides/patologia , Regiões Promotoras Genéticas/imunologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia
13.
Clin Rev Allergy Immunol ; 66(2): 138-148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554235

RESUMO

Osteoporosis is a major clinical problem in many autoimmune diseases, including primary biliary cholangitis (PBC), the most common autoimmune liver disease. Osteoporosis is a major cause of fracture and related mortality. However, it remains unclear whether PBC confers a causally risk-increasing effect on osteoporosis. Herein, we aimed to investigate the causal relationship between PBC and osteoporosis and whether the relationship is independent of potential confounders. We performed bidirectional Mendelian randomization (MR) analyses to investigate the association between PBC (8021 cases and 16,489 controls) and osteoporosis in Europeans (the UK Biobank and FinnGen Consortium: 12,787 cases and 726,996 controls). The direct effect of PBC on osteoporosis was estimated using multivariable MR analyses. An independent replication was conducted in East Asians (PBC: 2495 cases and 4283 controls; osteoporosis: 9794 cases and 168,932 controls). Trans-ethnic meta-analysis was performed by pooling the MR estimates of Europeans and East Asians. Inverse-variance weighted analyses revealed that genetic liability to PBC was associated with a higher risk of osteoporosis in Europeans (OR, 1.040; 95% CI, 1.016-1.064; P = 0.001). Furthermore, the causal effect of PBC on osteoporosis persisted after adjusting for BMI, calcium, lipidemic traits, and sex hormones. The causal relationship was further validated in the East Asians (OR, 1.059; 95% CI, 1.023-1.096; P = 0.001). Trans-ethnic meta-analysis confirmed that PBC conferred increased risk on osteoporosis (OR, 1.045; 95% CI, 1.025-1.067; P = 8.17 × 10-6). Our data supports a causal effect of PBC on osteoporosis, and the causality is independent of BMI, calcium, triglycerides, and several sex hormones.


Assuntos
Predisposição Genética para Doença , Cirrose Hepática Biliar , Análise da Randomização Mendeliana , Osteoporose , Feminino , Humanos , Masculino , Povo Asiático/genética , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/epidemiologia , Osteoporose/genética , Osteoporose/epidemiologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco , População Branca/genética , População Europeia , População do Leste Asiático
14.
J Lipid Res ; 54(1): 44-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23071295

RESUMO

Our objective was to investigate the potential roles of CCN1 in the inflammation and macrophage infiltration of nonalcoholic fatty liver disease (NAFLD). The regulation of hepatic CCN1 expression was investigated in vitro with murine primary hepatocytes treated with free fatty acids or lipopolysaccharide (LPS) and in vivo with high-fat (HF) diet-fed mice or ob/ob mice. CCN1 protein and a liver-specific CCN1 expression plasmid were administered to mice fed a normal diet (ND) or HF diet. Myeloid-derived macrophages and RAW264.7 cells were also treated with CCN1 in vitro to determine the chemotactic effects of CCN1 on macrophages. LPS treatment significantly increased hepatic CCN1 expression in HF diet-fed mice and ob/ob mice. LPS and FFAs induced CCN1 expression in primary murine hepatocytes in vitro through the TLR4/MyD88/AP-1 pathway. CCN1 protein and overexpression of CCN1 in the liver induced more severe hepatic inflammation and macrophage infiltrates in HF mice than in ND mice. CCN1 recruited macrophages through activation of the Mek/Erk signaling pathway in myeloid-derived macrophages and RAW264.7 cells in vitro. Endotoxin and FFA-induced CCN1 expression in hepatocytes is involved in the hepatic proinflammatory response and macrophage infiltration in murine NAFLD.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Macrófagos/imunologia , Animais , Antígeno CD11b/metabolismo , Quimiotaxia/efeitos dos fármacos , Ácidos Graxos não Esterificados/farmacologia , Fígado Gorduroso/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Hepatopatia Gordurosa não Alcoólica , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo
15.
Front Immunol ; 14: 1112672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993960

RESUMO

Background and aims: The key role of tissue-resident memory T (TRM) cells in the immune regulation of hepatocellular carcinoma (HCC) has been investigated and reported, but the regulatory mechanism of tumor microenvironment on TRM cells is still unclear. Lymphocyte activating gene 3 (LAG-3) is a promising next-generation immune checkpoint that is continuously expressed due to persistent antigen exposure in the tumor microenvironment. Fibrinogen-like protein 1 (FGL1) is a classical ligand of LAG-3 and can promote T cell exhaustion in tumors. Here, we excavated the effect of FGL1-LAG3 regulatory axis on TRM cells in HCC. Methods: The function and phenotype of intrahepatic CD8+ TRM cells in 35 HCC patients were analyzed using multicolor flow cytometry. Using a tissue microarray of 80 HCC patients, we performed the prognosis analysis. Moreover, we investigated the suppressive effect of FGL1 on CD8+ TRM cells both in in vitro induction model and in vivo orthotopic HCC mouse model. Results: There was an increase in LAG3 expression in CD8+ TRM cells in end-stage HCC; moreover, FGL1 levels were negatively correlated with CD103 expression and related to poor outcomes in HCC. Patients with high CD8+ TRM cell proportions have better outcomes, and FGL1-LAG3 binding could lead to the exhaustion of CD8+ TRM cells in tumors, indicating its potential as a target for immune checkpoint therapy of HCC. Increased FGL1 expression in HCC may result in CD8+ TRM cell exhaustion, causing tumor immune escape. Conclusions: We identified CD8+TRM cells as a potential immunotherapeutic target and reported the effect of FGL1-LAG3 binding on CD8+ TRM cell function in HCC.


Assuntos
Carcinoma Hepatocelular , Fibrinogênio , Neoplasias Hepáticas , Exaustão das Células T , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Linfócitos T CD8-Positivos , Fibrinogênio/metabolismo , Neoplasias Hepáticas/patologia , Microambiente Tumoral , Humanos
16.
Nat Commun ; 14(1): 1732, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977669

RESUMO

Genome-wide association studies have identified 19p13.3 locus associated with primary biliary cholangitis (PBC). Here we aim to identify causative variant(s) and initiate efforts to define the mechanism by which the 19p13.3 locus variant(s) contributes to the pathogenesis of PBC. A genome-wide meta-analysis of 1931 PBC subjects and 7852 controls in two Han Chinese cohorts confirms the strong association between 19p13.3 locus and PBC. By integrating functional annotations, luciferase reporter assay and allele-specific chromatin immunoprecipitation, we prioritize rs2238574, an AT-Rich Interaction Domain 3A (ARID3A) intronic variant, as a potential causal variant at 19p13.3 locus. The risk allele of rs2238574 shows higher binding affinity of transcription factors, leading to an increased enhancer activity in myeloid cells. Genome-editing demonstrates the regulatory effect of rs2238574 on ARID3A expression through allele-specific enhancer activity. Furthermore, knock-down of ARID3A inhibits myeloid differentiation and activation pathway, and overexpression of the gene has the opposite effect. Finally, we find ARID3A expression and rs2238574 genotypes linked to disease severity in PBC. Our work provides several lines of evidence that a non-coding variant regulates ARID3A expression, presenting a mechanistic basis for association of 19p13.3 locus with the susceptibility to PBC.


Assuntos
Predisposição Genética para Doença , Cirrose Hepática Biliar , Humanos , Estudo de Associação Genômica Ampla , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/patologia , Genótipo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética
17.
J Autoimmun ; 39(3): 216-21, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22727562

RESUMO

Liver granulomas and elevated serum IgM are commonly observed in patients with primary biliary cirrhosis (PBC) but their pathogenetic significance remains largely unknown. To address this issue we performed an extensive immunostaining and colocalization study of markers associated with dendritic cells and IgM in a large cohort of tissue samples from PBC and control livers as well as from non-hepatic granulomatous diseases. First, the classical dendritic cell CD11c marker is highly expressed and more sensitive than classical hematoxylin-eosin staining in detecting granulomas associated with PBC and other conditions. Second, PBC cases with CD11c-positive granulomas have significantly higher serum IgM levels and earlier disease stages. Third, granulomas from PBC and other diseases demonstrate markers of dendritic cell immaturity, i.e. CD11b, reduced MHC II, IL-23, CCR7 and CD83 expression, and elevated C1q expression. Lastly, B cells and IgM-positive plasma cells are largely represented around PBC granulomas along with macrophages. In conclusion, our comprehensive immunohistochemical study suggests that dendritic cells are key to the pathogenesis of granulomas, regardless of their origin. More specifically, PBC liver granulomas may result from the interaction between immature dendritic cells and IgM.


Assuntos
Células Dendríticas/imunologia , Granuloma/imunologia , Imunoglobulina M/imunologia , Cirrose Hepática Biliar/imunologia , Fígado/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Biomarcadores/metabolismo , Diferenciação Celular , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Feminino , Granuloma/complicações , Granuloma/metabolismo , Granuloma/patologia , Humanos , Imunoglobulina M/sangue , Imuno-Histoquímica , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Biliar/complicações , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Plasmócitos/metabolismo , Plasmócitos/patologia
18.
Dig Dis Sci ; 57(2): 390-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21948338

RESUMO

BACKGROUND/AIMS: Nonalcoholic fatty liver disease (NAFLD) is classically associated with insulin resistance and the inflammatory response, especially in the nonalcoholic steatohepatitis phase. The liver X receptors (LXRs) play a critical role in the regulation of cholesterol metabolism and inflammatory processes. METHODS: Wild-type C57BL/6 mice were fed a normal diet (ND) or a high-fat (HF) diet for 8 weeks. Some ND- and HF-fed mice were treated (i.p.) with the LXR agonist T0901317 (30 mg/kg/day) for 7 days. Lipopolysaccharide (LPS, 50 µg/mouse) was then injected intraperitoneally to induce liver injury. The activation of MAPKs, NF-κB and the PI3K pathway was evaluated using Western blot. Bone marrow-derived macrophages (MDMs) were isolated from the femurs of C57BL/6 mice and cultured with or without T0901317 (20 µmol/l). The expression of tumor necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) was evaluated in vitro or in vivo using real-time PCR, immunohistochemistry, or Western blot. RESULTS: The LXR agonist T0901317 attenuated LPS-induced liver injury in a murine model of NAFLD, reflected by reduced serum alanine aminotransferase and aspartate aminotransferase levels, and reduced liver histology changes. Activation of LXRs reduced TNF-α and iNOS expression through inhibiting JNK and the PI3K signaling pathway. An in vitro study demonstrated that the activation of LXR inhibited the expression of TNF-α and iNOS in the MDMs of mice. CONCLUSIONS: Activation of LXRs attenuates LPS-induced liver injury in murine NAFLD through inhibiting the pro-inflammatory activity of macrophages.


Assuntos
Fígado Gorduroso/fisiopatologia , Hidrocarbonetos Fluorados/farmacologia , Receptores Nucleares Órfãos/antagonistas & inibidores , Sulfonamidas/farmacologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Western Blotting , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Imuno-Histoquímica , Lipogênese/fisiologia , Lipopolissacarídeos/efeitos adversos , Fígado/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Hepatopatia Gordurosa não Alcoólica , Receptores Nucleares Órfãos/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
19.
Front Immunol ; 13: 967055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172356

RESUMO

Tissue-resident memory (TRM) T cells are a unique subset of memory T cells that are critical for the first line of defense against pathogens or antigens in peripheral non-lymphoid tissues such as liver, gut, and skin. Generally, TRM cells are well adapted to the local environment in a tissue-specific manner and typically do not circulate but persist in tissues, distinguishing them from other memory T cell lineages. There is strong evidence that liver TRM cells provide a robust adaptive immune response to potential threats. Indeed, the potent effector function of hepatic TRM cells makes it essential for chronic liver diseases, including viral and parasite infection, autoimmune liver diseases (AILD), nonalcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC) and liver transplantation. Manipulation of hepatic TRM cells might provide novel promising strategies for precision immunotherapy of chronic liver diseases. Here, we provide insights into the phenotype of hepatic TRM cells through surface markers, transcriptional profiles and effector functions, discuss the development of hepatic TRM cells in terms of cellular origin and factors affecting their development, analyze the role of hepatic TRM cells in chronic liver diseases, as well as share our perspectives on the current status of hepatic TRM cell research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Memória Imunológica , Células T de Memória , Fenótipo
20.
Front Immunol ; 13: 1076594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591302

RESUMO

Background and aims: Tetraspanin proteins are closely related to the functional changes of B cells, including antigen presentation, production of cytokines, and transduction. We aim to explore the potential role of Tetraspanin 1 (TSPAN1) in the biological activities of B cells in AIH. Methods and results: Herein, this study found that numbers of cells expressing TSPAN1 were significantly increased in AIH patients compared to PBC, chronic hepatitis B, and healthy control (P < 0.0001). Moreover, there was a positive correlation between numbers of TSPAN1+ cells and AIH disease severity (P < 0.0001). Immunofluorescence staining further confirmed that TSPAN1 was primarily expressed on CD19+ B cells. Flow-cytometric analysis showed that TSPAN1+ B cells secreted more inflammatory cytokines and expressed higher level of CD86 than TSPAN1- B cells. Furthermore, compared with TSAPN1- cells, the expression of CXCR3 on TSPAN1+ cells was also higher. Meanwhile, CXCL10, the ligand of CXCR3, was significantly elevated in the liver of AIH (P < 0.01) and had positive correlation with the quantities of TSPAN1 (P < 0.05). Interestingly, the numbers of TSPAN1+ B cells were decreased in AIH patients after immunosuppressive therapy. Conclusions: TSPAN1+ B cells in the liver may promote the progression of AIH via secreting cytokines and presenting antigens. The chemotactic movement of TSPAN1+ B cells toward the liver of AIH was possibly due to CXCR3 - CXCL10 interaction.


Assuntos
Linfócitos B , Hepatite Autoimune , Humanos , Linfócitos B/imunologia , Citocinas , Hepatite Autoimune/genética , Hepatite Autoimune/imunologia , Tetraspaninas/genética , Tetraspaninas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA