Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Chemistry ; 23(11): 2706-2715, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28004889

RESUMO

To elucidate the involvement of individual and inter-related pathological factors [i.e., amyloid-ß (Aß), metals, and oxidative stress] in the pathogenesis of Alzheimer's disease (AD), chemical tools have been developed. Characteristics required for such tool construction, however, have not been clearly identified; thus, the optimization of available tools or new design has been limited. Here, key structural properties and mechanisms that can determine tools' regulatory reactivities with multiple pathogenic features found in AD are reported. A series of small molecules was built up through rational structural selection and variations onto the framework of a tool useful for in vitro and in vivo metal-Aß investigation. Variations include: (i) location and number of an Aß interacting moiety; (ii) metal binding site; and (iii) denticity and structural flexibility. Detailed biochemical, biophysical, and computational studies were able to provide a foundation of how to originate molecular formulas to devise chemical tools capable of controlling the reactivities of various pathological components through distinct mechanisms. Overall, this multidisciplinary investigation illustrates a structure-mechanism-based strategy of tool invention for such a complicated brain disease.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cloretos/química , Cobre/química , Humanos , Metais/química , Metais/metabolismo , Estresse Oxidativo , Ligação Proteica , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria , Compostos de Zinco/química
2.
J Comput Chem ; 37(11): 971-5, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-26696236

RESUMO

The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density.


Assuntos
Argônio/química , Derivados de Benzeno/química , Eletricidade , Teoria Quântica , Eletricidade Estática
3.
J Phys Chem A ; 120(46): 9305-9314, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27802060

RESUMO

Various types of interactions between halogen (X) and π moiety (X-π interaction) including halogen bonding play important roles in forming the structures of biological, supramolecular, and nanomaterial systems containing halogens and aromatic rings. Furthermore, halogen molecules such as X2 and CX4 (X = Cl/Br) can be intercalated in graphite and bilayer graphene for doping and graphene functionalization/modification. Due to the X-π interactions, though recently highly studied, their structures are still hardly predictable. Here, using the coupled-cluster with single, double, and noniterative triple excitations (CCSD(T)), the Møller-Plesset second-order perturbation theory (MP2), and various flavors of density functional theory (DFT) methods, we study complexes of benzene (Bz) with halogen-containing molecules X2 and CX4 (X = Cl/Br) and analyze various components of the interaction energy using symmetry adapted perturbation theory (SAPT). As for the lowest energy conformers (S1), X2-Bz is found to have the T-shaped structure where the electropositive X atom-end of X2 is pointing to the electronegative midpoint of CC bond of the Bz ring, and CX4-Bz has the stacked structure. In addition to this CX4-Bz (S1), other low energy conformers of X2-Bz (S2/S3) and CX4-Bz (S2) are stabilized primarily by the dispersion interaction, whereas the electrostatic interaction is substantial. Most of the density functionals show noticeable deviations from the CCSD(T) complete basis set (CBS) limit binding energies, especially in the case of strongly halogen-bonded conformers of X2-Bz (S1), whereas the deviations are relatively small for CX4-Bz where the dispersion is more important. The halogen bond shows highly anisotropic electron density around halogen atoms and the DFT results are very sensitive to basis set. The unsatisfactory performance of many density functionals could be mainly due to less accurate exchange. This is evidenced from the good performance by the dispersion corrected hybrid and double hybrid functionals. B2GP-PLYP-D3 and PBE0-TS(Tkatchenko-Scheffler)/D3 are well suited to describe the X-π interactions adequately, close to the CCSD(T)/CBS binding energies (within ∼1 kJ/mol). This understanding would be useful to study diverse X-π interaction driven structures such as halogen containing compounds intercalated between 2-dimensional layers.

4.
Acc Chem Res ; 47(11): 3321-30, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25338296

RESUMO

CONSPECTUS: In chemical and biological systems, various interactions that govern the chemical and physical properties of molecules, assembling phenomena, and electronic transport properties compete and control the microscopic structure of materials. The well-controlled manipulation of each component can allow researchers to design receptors or sensors, new molecular architectures, structures with novel morphology, and functional molecules or devices. In this Account, we describe the structures and electronic and spintronic properties of π-molecular systems that are important for controlling the architecture of a variety of carbon-based systems. Although DFT is an important tool for describing molecular interactions, the inability of DFT to accurately represent dispersion interactions has made it difficult to properly describe π-interactions. However, the recently developed dispersion corrections for DFT have allowed us to include these dispersion interactions cost-effectively. We have investigated noncovalent interactions of various π-systems including aromatic-π, aliphatic-π, and non-π systems based on dispersion-corrected DFT (DFT-D). In addition, we have addressed the validity of DFT-D compared with the complete basis set (CBS) limit values of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and Møller-Plesset second order perturbation theory (MP2). The DFT-D methods are still unable to predict the correct ordering in binding energies within the benzene dimer and the cyclohexane dimer. Nevertheless, the overall DFT-D predicted binding energies are in reasonable agreement with the CCSD(T) results. In most cases, results using the B97-D3 method closely reproduce the CCSD(T) results with the optimized energy-fitting parameters. On the other hand, vdW-DF2 and PBE0-TS methods estimate the dispersion energies from the calculated electron density. In these approximations, the interaction energies around the equilibrium point are reasonably close to the CCSD(T) results but sometimes slightly deviate from them because interaction energies were not particularly optimized with parameters. Nevertheless, because the electron cloud deforms when neighboring atoms/ions induce an electric field, both vdW-DF2 and PBE0-TS seem to properly reproduce the resulting change of dispersion interaction. Thus, improvements are needed in both vdW-DF2 and PBE0-TS to better describe the interaction energies, while the B97-D3 method could benefit from the incorporation of polarization-driven energy changes that show highly anisotropic behavior. Although the current DFT-D methods need further improvement, DFT-D is very useful for computer-aided molecular design. We have used these newly developed DFT-D methods to calculate the interactions between graphene and DNA nucleobases. Using DFT-D, we describe the design of molecular receptors of π-systems, graphene based electronic devices, metalloporphyrin half-metal based spintronic devices as graphene nanoribbon (GNR) analogs, and graphene based molecular electronic devices for DNA sequencing. DFT-D has also helped us understand quantum phenomena in materials and devices of π-systems including graphene.


Assuntos
Teoria Quântica , Modelos Teóricos , Termodinâmica
5.
Chemistry ; 21(46): 16349-53, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26418848

RESUMO

Pyrene-based turn-on ratiometric fluorescent probe 1 demonstrates high sensitivity and exceptional selectivity toward Cr(3+) in the presence of other metals, including Fe(3+) in aqueous media. Interaction of Cr(3+) with probe 1 brings pyrene moieties close enough to have better aligned π-π stacking, thus enhancing the excimer peak many fold. On the other hand, the interaction of Fe(3+) with probe 1 brings forth a negligible difference in stacking, resulting in an insignificant change in fluorescence intensity. Exceptional selectivity of probe 1 with Cr(3+) over Fe(3+) and other metals has been confirmed by theoretical studies in addition to experimental results. Imaging of HeLa cells observed by confocal fluorescence microscopy reveals that probe 1 can be used to monitor Cr(3+) in live cells to map its subcellular distribution.


Assuntos
Cromo/química , Compostos Férricos/química , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Ferro/química , Pirenos/química , Células HeLa , Humanos , Microscopia Confocal , Estrutura Molecular
6.
Phys Chem Chem Phys ; 17(16): 10925-33, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25820034

RESUMO

The CO2 capturing and sequestration are of importance in environmental science. Understanding of the CO2-interactions with various functional molecules including multi-N-containing superbases and heteroaromatic ring systems is essential for designing novel materials to effectively capture the CO2 gas. These interactions are investigated using density functional theory (DFT) with dispersion correction and high level wave function theory (resolution-of-identity (RI) spin-component-scaling (scs) Möller-Plesset second-order perturbation theory (MP2) and coupled cluster with single, double and perturbative triple excitations (CCSD(T))). We found intriguing molecular systems of melamine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), 7-azaindole and guanidine, which show much stronger CO2 interactions than the well-known functional systems such as amines. In particular, melamine could be exploited to design novel materials to capture the CO2 gas, since one CO2 molecule can be coordinated by four melamine molecules, which gives a binding energy (BE) of ∼85 kJ mol(-1), much larger than in other cases.


Assuntos
Dióxido de Carbono/química , Teoria Quântica , Compostos Azabicíclicos/química , Guanidina/química , Indóis/química , Modelos Moleculares , Conformação Molecular , Triazinas/química , Vibração
7.
J Phys Chem A ; 118(35): 7274-9, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24641201

RESUMO

The CO molecule can interact with the hydroxyl radical ((•)OH) via either a weak noncovalent interaction or strong covalent bonding. Upon the ionization of neutral water clusters, the resulting water cluster cations produce protonated water clusters and hydroxyl radicals. In this regard, we investigate the interactions of a CO molecule with water dimer and trimer cations using density functional theory (DFT), Möller-Plesset second-order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. It is found that the reaction products of CO by the water dimer and trimer cations form a HOCO radical solvated by a protonated water monomer and dimer, respectively. These radicals are useful intermediates to make oxalic acids, formic acids, metal ligands, and so on, which is important in green chemistry.

8.
J Am Chem Soc ; 135(1): 90-3, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23259922

RESUMO

A water-soluble imidazolium-based fluorescent chemosensor senses RNA selectively through fluorescence enhancement over other biologically relevant biomolecules in aqueous solution at physiological pH 7.4. Fluorescence image detection of RNA in living cells such as onion cells, HeLa cells, and animal model cells was successfully demonstrated which displays a chelation-enhanced fluorescence effect. These affinities can be attributed to the strong electrostatic (C-H)(+)···A(-) ionic H-bonding and the aromatic moiety driven π-stacking of imidazolium-based cyclophane with the size-complementary major groove of RNA.


Assuntos
Caenorhabditis elegans/química , Fluorescência , Corantes Fluorescentes/química , Imidazóis/química , Compostos Macrocíclicos/química , Cebolas/química , RNA/análise , Animais , Caenorhabditis elegans/citologia , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Compostos Macrocíclicos/síntese química , Cebolas/citologia
9.
Org Biomol Chem ; 11(37): 6407-13, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23959564

RESUMO

New fluorescent benzimidazolium-based receptors selectively display the effective fluorescence quenching effect for biologically important anions, GTP and I(-), in aqueous solution of physiological pH 7.4. These affinities can be attributed to the strong ionic H-bonding along with additional interactions of fluorophore moieties with the nucleic base of GTP and I(-).


Assuntos
Benzimidazóis/química , Éteres Cíclicos/química , Corantes Fluorescentes/química , Guanosina Trifosfato/análise , Iodetos/análise , Piperidinas/química , Teoria Quântica , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Água/química
10.
J Phys Chem B ; 121(19): 5007-5016, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28463493

RESUMO

A novel hydrophilic imidazolium fluorescent chemosensor has been utilized to prepare water-soluble fluorescent graphene complex via a facile ion-exchange strategy, which gives a very high quantum yield (0.87). The highly fluorescent graphene complex displays a close resemblance to the water-soluble fluorescent chemosensor, as the chemisorbed imidazolium hinders the electron transfer between the naphthalene moiety and the graphene. If the imidazolium is simply physisorbed on graphene by physical mixing, it does not show a high quantum yield because the π-π stacking between the naphthalene moiety and graphene leads to fluorescence quenching. The fluorescent chemosensor selectively detects RNA by turn-on fluorescence at physiological pH in aqueous solution. The fluorescent chemosensor as well as the fluorescent graphene complex would find potential applications as photoresponsive materials and biomedical probes.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Grafite/química , Imidazóis/química , Imidazóis/síntese química , Naftalenos/química , Transporte de Elétrons , Estrutura Molecular , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície
11.
Chem Sci ; 7(6): 3581-3588, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997851

RESUMO

DNA intercalation has been very useful for engineering DNA-based functional materials. It is generally expected that the intercalation phenomenon in RNA would be similar to that in DNA. Here we note that the neighbor-exclusion principle is violated in RNA by naphthalene-based cationic probes, in contrast to the fact that it is usually valid in DNA. All the intercalation structures are responsible for the fluorescence, where small naphthalene moieties are intercalated in between bases via π-π interactions. The structure is aided by hydrogen bonds between the cationic moieties and the ribose-phosphate backbone, which results in specific selectivity for RNA over DNA. This experimentally observed mechanism is supported by computationally reproducing the fluorescence and CD data. MD simulations confirm the unfolding of RNA due to the intercalation of probes. Elucidation of the mechanism of selective sensing for RNA over DNA would be highly beneficial for dynamical observation of RNA which is essential for studying its biological roles.

12.
Sci Rep ; 6: 30123, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27444513

RESUMO

Since the aliphatic C-H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C-H (Cali-H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali-H groups. An X-ray structure of imidazolium-based scaffolds using Cali-H···A(-) interactions (A(-) = anion) shows that a halide anion is directly interacting with fifteen Cali-H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali-H···A(-) interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms.

13.
Org Lett ; 16(8): 2150-3, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24702047

RESUMO

Cationic cyclophanes with bridging and spacer groups possess well-organized semirigid cavities and are able to encapsulate and stabilize anionic species through diverse molecular interactions. We highlight the precise tuning of functionalized cyclophanes toward selective recognition of AMP, GTP, and pyrophosphate (PPi) using fluorescence, NMR spectroscopy, and density functional theory (DFT).


Assuntos
Modelos Moleculares , Compostos Organofosforados/química , Hidrocarbonetos Policíclicos Aromáticos/química , Monofosfato de Adenosina/química , Ânions , Cátions , Fluorescência , Guanosina Trifosfato/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
14.
Chem Commun (Camb) ; 49(48): 5474-6, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23665978

RESUMO

Highly adhesive properties of graphene grain boundaries to permanganate lead to a very quick, easy and convenient method to visualize the grain boundaries simply using an optical microscope, which would be vital to improve specific properties of graphene.

15.
Chem Commun (Camb) ; 48(21): 2662-4, 2012 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-22222484

RESUMO

A new water-soluble and fluorescent imidazolium-anthracene cyclophane 1 effectively recognizes and differentiates the biologically important GTP and ATP in 100% aqueous solution of physiological pH 7.4. Fluorescence, (1)H-NMR spectra and ab initio calculations demonstrate that excimer formation and fluorescence enhancement occur upon GTP and ATP binding, respectively, through (C-H)(+)···A(-) hydrogen bond interactions.


Assuntos
Antracenos/química , Corantes Fluorescentes/química , Guanosina Trifosfato/química , Imidazóis/química , Trifosfato de Adenosina/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Espectrometria de Fluorescência , Água/química
16.
J Chem Theory Comput ; 8(1): 99-105, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-26592872

RESUMO

Structures of neutral metal-dibenzene complexes, M(C6H6)2 (M = Sc-Zn), are investigated by using Møller-Plesset second order perturbation theory (MP2). The benzene molecules change their conformation and shape upon complexation with the transition metals. We find two types of structures: (i) stacked forms for early transition metal complexes and (ii) distorted forms for late transition metal ones. The benzene molecules and the metal atom are bound together by δ bonds which originate from the interaction of π-MOs and d orbitals. The binding energy shows a maximum for Cr(C6H6)2, which obeys the 18-electron rule. It is noticeable that Mn(C6H6)2, a 19-electron complex, manages to have a stacked structure with an excess electron delocalized. For other late transition metal complexes having more than 19 electrons, the benzene molecules are bent or stray away from each other to reduce the electron density around a metal atom. For the early transition metals, the M(C6H6) complexes are found to be more weakly bound than M(C6H6)2. This is because the M(C6H6) complexes do not have enough electrons to satisfy the 18-electron rule, and so the M(C6H6)2 complexes generally tend to have tighter binding with a shorter benzene-metal length than the M(C6H6) complexes, which is quite unusual. The present results could provide a possible explanation of why on the Ni surface graphene tends to grow in a few layers, while on the Cu surface the weak interaction between the copper surface and graphene allows for the formation of a single layer of graphene, in agreement with chemical vapor deposition experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA