Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dalton Trans ; 50(5): 1666-1671, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33464263

RESUMO

Noble metal nanoparticles (NMNPs) with excellent catalytic activity and stability play an important role in the field of environmental governance. A uniform distribution and a strong binding force with the carriers of the noble metal nanoparticles are important, but avoidance of the use of additional reducing agents is a promising direction of research. Herein, 2D ultrathin surfactant-encapsulating polyoxometalate (SEP) nanosheets constructed by the self-assembly of dodecyldimethylammonium bromide (DODA) and molybdophosphate (H3PMo12O40, PMo12) are designed to be versatile carriers for Ag nanoparticles. Under the synergistic effect of the well-arranged PMo12 units, encapsulating hydrophobic oleic acid (OA) and reductive molybdophosphate under Xe lamp irradiation, the silver oleate (AgOA)-derived Ag nanoparticles (5 ± 2 nm) are monodispersed on the DODA-PMo12 assemblies and form the Agx/DODA-PMo12 composite. The optimized Ag4.89/DODA-PMo12 composite exhibits high catalytic activity and stability in the degradation of 4-nitrophenol (4-NP), which reaches a superior rate constant of 6.49 × 10-3 s-1 and without significant deterioration after three recycles. This technique can be facilely promoted to other noble metal nanoparticles with excellent catalytic activity and stability.

2.
Nat Commun ; 11(1): 490, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980657

RESUMO

The oxidized platinum (Pt) can exhibit better electrocatalytic activity than metallic Pt0 in the hydrogen evolution reaction (HER), which has aroused great interest in exploring the role of oxygen in Pt-based catalysts. Herein, we select two structurally well-defined polyoxometalates Na5[H3Pt(IV)W6O24] (PtW6O24) and Na3K5[Pt(II)2(W5O18)2] (Pt2(W5O18)2) as the platinum oxide model to investigate the HER performance. Electrocatalytic experiments show the mass activities of PtW6O24/C and Pt2(W5O18)2/C are 20.175 A mg-1 and 10.976 A mg-1 at 77 mV, respectively, which are better than that of commercial 20% Pt/C (0.398 A mg-1). The in situ synchrotron radiation experiments and DFT calculations suggest that the elongated Pt-O bond acts as the active site during the HER process, which can accelerate the coupling of proton and electron and the rapid release of H2. This work complements the knowledge boundary of Pt-based electrocatalytic HER, and suggests another way to update the state-of-the-art electrocatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA